1 Concave and convex functions

1.1 Convex Sets

Definition 1 A set $X \subset \mathbb{R}^n$ is called convex if given any two points $x', x'' \in X$ the line segment joining x' and x'' completely belongs to X, in other words for each $t \in [0,1]$ the point

$$x_t = (1-t)x' + tx''$$

is also in X for every $t \in [0,1]$.

The intersection of convex sets is convex.

The union of convex sets is not necessarily convex.

Let $X \subset \mathbb{R}^n$. The convex hull of X is defined as the smallest convex set that contain X.

The convex hull of X consists of all points which are convex combinations of some points of X

$$CH(X) = \{y \in \mathbb{R}^n : y = \sum t_ix_i, \ x_i \in X, \ \sum t_i = 1\}.$$

1.2 Concave and Convex Function

A function f is concave if the line segment joining any two points on the graph is never above the graph. More precisely

Definition 2 A function $f : S \subset \mathbb{R}^n \to \mathbb{R}$ defined on a convex set S is concave if given any two points $x', x'' \in S$ we have

$$(1-t)f(x') + tf(x'') \leq f((1-t)x' + tx'')$$

for any $t \in [0,1]$.

f is called strictly concave if

$$(1-t)f(x') + tf(x'') < f((1-t)x' + tx'').$$

Definition 3 A function $f : S \subset \mathbb{R}^n \to \mathbb{R}$ is convex if given any two points $x', x'' \in S$ we have

$$(1-t)f(x') + tf(x'') \geq f((1-t)x' + tx'')$$

for any $t \in [0,1]$.

f is called strictly convex if

$$(1-t)f(x') + tf(x'') > f((1-t)x' + tx'').$$
Roughly speaking concavity of a function means that the graph is above chord.
It is clear that if f is concave then $-f$ is convex and vice versa.

Theorem 1 A function $f : S \subset R^n \rightarrow R$ is concave (convex) if and only if its restriction to every line segment of R^n is concave (convex) function of one variable.

Theorem 2 If f is a concave (convex) function then a local maximizer (minimizer) is global.

1.2.1 Characterization in Terms of Graphs
Given a function $f : S \subset R^n \rightarrow R$ defined on a convex set S.

The hypograph of f is defined as the set of points $(x,y) \in S \times R$ lying on or bellow the graph of the function:

$$\text{hyp } f = \{(x,y) : x \in S, y \leq f(x)\}.$$

Similarly, the epigraph of f is defined as the set of points $(x,y) \in S \times R$ lying on or above the graph of the function:

$$\text{epi } f = \{(x,y) : x \in S, y \geq f(x)\}.$$

Theorem 3 (a) A function $f : S \subset R^n \rightarrow R$ defined on a convex set S is concave if and only if its hypograph hyp f is convex.

(b) A function $f : S \subset R^n \rightarrow R$ defined on a convex set S is convex if and only if its epigraph epi f is convex.

Proof of (a). Let $(x_1,y_1),(x_2,y_2) \in \text{hyp } f$, let us show that

$$(xt,yt) = (tx_1 + (1-t)x_2, ty_1 + (1-t)y_2) \in \text{hyp } f.$$

$$y_t = ty_1 + (1-t)y_2 \leq tf(x_1) + (1-t)f(x_2) \leq f(tx_1 + (1-t)x_2) = f(x_t).$$

1.2.2 Characterization in Terms of Level Sets
Given a function $f : S \subset R^n \rightarrow R$ defined on a convex set S.

Take any number $K \in R$.

The upper contour set U_K of f is defined as

$$U_K = \{x \in S, f(x) \geq K\}.$$

Similarly, the lower contour set L_K of f is defined as

$$L_K = \{x \in S, f(x) \leq K\}.$$

2
Theorem 4 (a) Suppose a function $f : S \subset \mathbb{R}^n \to \mathbb{R}$ defined on a convex set S is concave. Then for every K the upper contour set U_K is either empty or a convex set.

(b) If f is convex, then for every K the lower contour set L_K is either empty or a convex set.

Proof. Let us prove only (a).

Let $x_1, x_2 \in U_k$, let us show that $x_t = tx_1 + (1-t)x_2 \in U_K$:

$f(x_t) = f(tx_1 + (1-t)x_2) \geq tf(x_1) + (1-t)f(x_2) \geq tK + (1-t)K = K.$

Remark. Notice that this is only necessary condition, not sufficient: consider the example $f(x) = e^x$ or $f(x) = x^3$.

1.2.3 Examples of Concave Functions

Theorem 5 Suppose $f_1, ..., f_n$ are concave (convex) functions and $a_1 > 0, ..., a_n > 0$, then the linear combination

$$F = a_1 f_1 + ... + a_n f_n$$

is concave (convex).

Proof.

$$F((1 - t)x + ty) = \sum a_i f_i((1 - t)x + ty) \geq \sum a_i[(1 - t)f_i(x) + tf_i(y)] = (1 - t) \sum a_i f(x) + t \sum a_i f(y) = (1 - t)F(x) + tF(y).$$

A function of the form $f(x) = f(x_1, x_2, ..., x_n) = a_0 + a_1 x_1 + a_2 x_2 + ... + a_n x_n$ is called affine function (if $a_0 = 0$, it is a linear function).

Theorem 6 An affine function is both concave and convex.

Proof. The theorem follows from previous theorem and following easy to prove statements:

1. The function $f(x_1, ..., x_n) = x_i$ is concave and convex;
2. The function $f(x_1, ..., x_n) = -x_i$ is concave and convex;
3. The constant function $f(x_1, ..., x_n) = a$ is concave and convex.

Theorem 7 A concave monotonic transformation of a concave function is itself concave.

Proof. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a concave function and $g : \mathbb{R} \to \mathbb{R}$ be concave and increasing, then

$$(g \circ f)(1 - t)x + ty = g(f((1 - t)x + ty)) \geq g((1 - t)f(x) + tf(y)) \geq (1 - t)g(f(x)) + tg(f(y)) = (1 - t)(g \circ f)(x) + t(g \circ f)(y).$$
here the first inequality holds since f is concave and g is increasing, and the second inequality holds since g is concave.

Remark. Note that just monotonic transformation of a concave function is not necessarily concave: consider, for example $f(x) = x$ and $g(z) = z^3$.

Thus the *concavity of a function is not ordinal*, it is cardinal property.

Economic Example

Suppose production function $f(x)$ is *concave* and the cost function $c(x)$ is *convex*. Suppose also p is the positive selling price. Then the profit function

$$\pi(x) = pf(x) + (-c(x))$$

is *concave* as a linear combination with positive coefficients of concave functions. Thus a local maximum of profit function is global in this case (see bellow).

1.3 Calculus Criteria for Concavity

For one variable functions we have the following statements

1. A C^1 function $f : U \subset \mathbb{R} \to \mathbb{R}$ is concave if and only if its first derivative $f'(x)$ is decreasing function.

2. A C^2 function $f : U \subset \mathbb{R} \to \mathbb{R}$ is concave if and only if its second derivative $f''(x)$ is ≤ 0.

In n-variable case usually instead of $f'(x)$ we consider the Jacobian (gradient) $Df(x)$ and instead of $f''(x)$ we consider the hessian $D^2f(x)$.

It is not clear how to generalize the above statements 1 and 2 to n-variable case since the statement "$Df(x)$ (which is a vector) is decreasing function” has no sense as well as ”$D^2f(x)$ (which is a matrix) is positive”.

Let us reformulate the statements 1 and 2 in the following forms:

1'. A C^1 function $f : U \subset \mathbb{R} \to \mathbb{R}$ is concave if and only if

$$f(y) - f(x) \leq f'(x)(y - x)$$

for all $x, y \in U$.

Hint: Observe that for concave $f(x)$ and $x < y$ one has

$$f'(x) \geq \frac{f(y) - f(x)}{y - x} \geq f'(y).$$

2'. A C^2 function $f : U \subset \mathbb{R} \to \mathbb{R}$ is concave if and only if the one variable quadratic form $Q(y) = f''(x) \cdot y^2$ is negative semidefinite for all $x \in U$.

Hint: Observe that the quadratic form $Q(y) = f''(x) \cdot y^2$ is negative semidefinite if and only if the coefficient $f''(x) \leq 0$.

4
Now we can formulate the multi-variable generalization of 1:

Theorem 8 A C^1 function $f : U \subset \mathbb{R}^n \rightarrow \mathbb{R}$ is concave if and only if

$$f(y) - f(x) \leq Df(x)(y - x),$$

for all $x, y \in U$, that is

$$f(y) - f(x) \leq \frac{\partial f}{\partial x_1}(x)(y_1 - x_1) + \ldots + \frac{\partial f}{\partial x_n}(x)(y_n - x_n).$$

Similarly f is convex if and only if

$$f(y) - f(x) \geq Df(x)(y - x).$$

Remember that concavity of a function means that the graph is above chord? Now we can say

Roughly speaking concavity of a function means that the tangent is above graph.

From this theorem follows

Corollary 1 Suppose f is concave and for some $x_0, y \in U$ we have

$$Df(x_0)(y - x_0) \leq 0,$$

then $f(y) \leq f(x_0)$ for THIS y.

Particularly, if directional derivative of f at x_0 in any feasible direction is nonpositive, i.e.

$$D_{y-x_0}f(x_0) = Df(x_0)(y - x_0) \leq 0$$

for ALL $y \in U$, then x_0 is GLOBAL max of f in U.

Indeed, since of concavity of f we have

$$f(y) - f(x_0) \leq Df(x_0)(y - x_0) \leq 0.$$

The following theorem is the generalization of 2:

Theorem 9 A C^2 function $f : U \subset \mathbb{R}^n \rightarrow \mathbb{R}$ defined on a convex open set U is

(a) concave if and only if the Hessian matrix $D^2 f(x)$ is negative semidefinite for all $x \in U$;

(b) strictly concave if the Hessian matrix $D^2 f(x)$ is negative definite for all $x \in U$;

(c) convex if and only if the Hessian matrix $D^2 f(x)$ is positive semidefinite for all $x \in U$;

(d) strictly convex if the Hessian matrix $D^2 f(x)$ is positive definite for all $x \in U$;
Remark. Note that the statement (b) (and (d) too) is not "only if": If \(f \) is strictly concave then the Hessian is not necessarily negative definite for ANY \(x \). Analyze, for example \(f(x) = -x^4 \).

Let us recall criteria for definiteness of matrix in terms of principal minors:

1. A matrix \(H \) is positive definite if and only if its \(n \) leading principal minors are \(> 0 \).

2. A matrix \(H \) is negative definite if and only if its \(n \) leading principal minors alternate in sign so that all odd order ones are \(< 0 \) and all even order ones are \(> 0 \).

3. A matrix \(H \) is positive semidefinite if and only if its \(2^n - 1 \) principal minors are all \(\geq 0 \).

4. A matrix \(H \) is negative semidefinite if and only if its \(2^n - 1 \) principal minors alternate in sign so that odd order minors are \(\leq 0 \) and even order minors are \(\geq 0 \).

Example. Let us determine the definiteness of the matrix \(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \).

Its first order principal minors are

\[M_1 = 1, \quad M'_1 = 0, \]

and the only second order principal minor is

\[M_2 = 0. \]

We are in the situation (3), so our matrix is positive semidefinite. Note that corresponding quadratic form is \(Q(x, y) = y^2 \).

Example. Let \(f(x, y) = 2x - y - x^2 + 2xy - y^2 \). Its Hessian is

\[\begin{pmatrix} -2 & 2 \\ 2 & -2 \end{pmatrix} \]

which is constant (does not depend on \((x, y)\)) and negative semidefinite. Thus \(f \) is concave.

Example. Consider the function \(f(x, y) = 2xy \). Its Hessian is

\[\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}. \]

Since the only second order principal minor is \(-1 < 0\) the matrix is indefinite, thus \(f \) is neither concave nor convex.
Example. Consider the Cobb-Douglas function \(f(x, y) = cx^a y^b \) with \(a, b, c > 0 \) in the first orthant \(x > 0, y > 0 \).

Its hessian is

\[
\begin{pmatrix}
 a(a-1)cx^{a-2}y^b & abcx^{a-1}y^{b-1} \\
 abcx^{a-1}y^{b-1} & b(b-1)cx^ay^{b-2}
\end{pmatrix}.
\]

The principal minors of order 1 of this matrix are

\[
M_1 = a(a-1)cx^{a-2}y^b, \quad M'_1 = b(b-1)cx^ay^{b-2}
\]

and the only principal minor of order 2 is

\[
M_2 = abcx^{2a-2}y^{2b-2}(1-(a+b)).
\]

When this function is concave? For this the Hessian must be negative semidefinite. This happens when all principal minors of degree 1 \(M_1 \) and \(M'_1 \) are \(\leq 0 \) and (only) principal minor of degree 2 \(M_2 \) is \(\geq 0 \).

Recall that we work in the first orthant \(x > 0, y > 0, \) and \(a, b, c > 0 \).

If our \(f(x, y) = cx^ay^b \) exhibits constant or decreasing return to scale (CRS or DRS), that is \(a+b \leq 1 \), then clearly \(a \leq 0, b \leq 0 \), and we have thus the Cobb-Douglas function is concave if and only if \(M_1 \leq 0, M'_1 \leq 0, M_2 \geq 0 \), thus \(f \) is concave.

Remark. So we have shown that if a Cobb-Douglas function \(f(x, y) = cx^ay^b \) is CRS or DRS, it is concave. But can it be convex?

1.4 Concave Functions and Optimization

Concavity of a function replaces the second derivative test to separate local max, min or saddle, moreover, for a concave function a critical point which is local max (min) is global:

Theorem 10 Let \(f : U \subset \mathbb{R}^n \rightarrow \mathbb{R} \) be concave (convex) function defined on a convex open set \(U \). If \(x^* \) is a critical point, that is \(Df(x^*) = 0 \), then it is global maximizer (minimizer).

Proof. Since \(Df(x^*) = 0 \) from the inequality

\[
f(y) - f(x^*) \leq Df(x^*)(y - x^*) = 0
\]

follows \(f(y) \leq f(x^*) \) for all \(y \in U \).

The next result is stronger, it allows to find maximizer also on the boundary of \(U \) if it is not assumed open:

Theorem 11 Let \(f : U \subset \mathbb{R}^n \rightarrow \mathbb{R} \) be concave function defined on a convex set \(U \). If \(x^* \) is a point, which satisfies

\[
Df(x^*)(y - x^*) \leq 0
\]
for each $y \in U$, then x^* is a global maximizer of f on U.

Similarly, if f is convex and

$$Df(x^*)(y - x^*) \geq 0$$

for each $y \in U$, then x^* is a global minimizer of f on U.

Proof. From

$$f(y) - f(x^*) \leq Df(x^*)(y - x^*) \leq 0$$

follows $f(y) \leq f(x^*)$ for all $y \in U$.

Remark. Here is an example of global maximizer which is not a critical point: Suppose $f : R \rightarrow R$ is an increasing and convex function on $[a, b]$. Then $f'(b)(x - b) \leq 0$ for all $x \in [a, b]$. Thus b is global maximizer of f on $[a, b]$.

Lagrange Case

Consider the problem

$$\max f(x_1, ..., x_n) \text{ s.t. } h_i(x) = c_i, \ i = 1, ..., k.$$

As we know if $x^* = (x_1^*, ..., x_n^*)$ is a maximizer, then there exist $\mu^* = (\mu_1^*, ..., \mu_k^*)$ such that (x^*, μ^*) satisfies Lagrange conditions $Df(x^*) - \mu^* \cdot Dh(x^*) = 0$ and $h_i(x^*) = c_i, \ i = 1, ..., k$.

This is the sufficient condition for a global maximum:

Theorem 12 Suppose f is concave, each h_i is convex, (x^*, μ^*) satisfies Lagrange conditions and each $\mu_i \geq 0$. Then x^* is a global maximizer.

KKT Case

Consider the problem

$$\max f(x_1, ..., x_n) \text{ s.t. } g_i(x) \leq c_i, \ i = 1, ..., k.$$

As we know if $x^* = (x_1^*, ..., x_n^*)$ is a maximizer, then there exist $\lambda^* = (\lambda_1^*, ..., \lambda_k^*)$ such that (x^*, λ^*) satisfies KKT conditions $Df(x^*) - \lambda^* \cdot Dg(x^*) = 0, \ \lambda_i \cdot (h_i(x^* - c_i) = 0, \ i = 1, ..., k, \ \lambda_i \geq 0, \ g_i(x^*) = c_i, \ i = 1, 2, ..., k$.

This is the sufficient condition for a global maximum:

Theorem 13 Suppose f is concave, each g_i is convex, and (x^*, λ^*) satisfies KKT conditions. Then x^* is a global maximizer.
Example. Consider a production function \(y = g(x_1, ..., x_n) \), where \(y \) denotes output, \(x = (x_1, ..., x_n) \) denotes the input bundle, \(p \) denotes the price of output and \(w_i \) is the cost per unit of input \(i \). Then the cost function is

\[
C(x) = w_1 x_1 + ... + w_n x_n,
\]

and the profit function is

\[
\pi(x) = pg(x) - C(x).
\]

Our first claim is that if \(g \) is concave, then \(\pi \) is concave too: \(C(x) \), as a linear function, is convex, then \(-C(x) \) is concave, besides \(pg(x) \) is concave too since \(p > 0 \), then \(\pi(x) = pg(x) + (-C(x)) \) is concave.

The first order condition gives

\[
\frac{\partial \pi(x)}{\partial x_i} = p \frac{\partial g(x)}{\partial x_i} - w_i = 0.
\]

Since of concavity this condition is necessary and sufficient to be interior maximizer. This means that the maximizer of profit is the value of \(x \) where marginal revenue product \(p \frac{\partial g(x)}{\partial x_i} \) equals to the factor price \(w_i \) for each input.

1.5 Quasiconcave Functions

Recall the property of a concave function \(f \): for each \(K \) the lower level set

\[
L_K = \{x, f(x) \leq K\}
\]

is concave.

This property is taken as the definition of quasiconcave function:

Definition 1. A function \(f(x) \) defined on a convex subset \(U \subset \mathbb{R}^n \) is quasi-concave if

\[
L_K = \{x : f(x) \leq K\}
\]

is a convex set for any constant \(K \).

Similarly, \(f \) is quasiconvex if

\[
U_K = \{x : f(x) \geq K\}
\]

is a convex set for any constant \(K \).

Definition 2. A function \(f(x) \) defined on a convex subset \(U \subset \mathbb{R}^n \) is quasi-concave if

\[
f(tx + (1-t)y) \geq \min(f(x), f(y))
\]

for each \(x, y \in U \) and \(t \in [0,1] \).
Similarly, \(f \) is quasiconvex if
\[
 f(tx + (1 - t)y) \leq \max(f(x), f(y)).
\]

Remark. Concavity implies, but is not implied by quasiconcavity. Indeed, the function \(f(x) = x^3 \) is quasiconcave (and quasiconvex) but not concave (and convex).

Remark. Besides \(f \) is quasiconcave \(f \) and only if \(-f\) is quasiconvex.

Theorem 14 Definition 1 and Definition 2 are equivalent.

Proof. (a) Def. 1 \(\Rightarrow \) Def. 2.

Given:
\[
 U_K = \{ x, \ f(x) \geq K \}
\]
is a convex set.

Prove:
\[
 f(tx + (1 - t)y) \geq \min(f(x), f(y)).
\]
Indeed, take \(K = \min(f(x), f(y)) \), suppose this min is \(f(x) \). Then \(K = f(x) \leq f(x) \), so \(x \in U_K \), and \(K = f(x) \leq f(y) \), so \(y \in U_K \). Then, since of convexity of \(U_K \) we have \(tx + (1 - t)y \in U_K \), that is \(K \leq f(tx + (1 - t)y) \).

(b) Def. 2 \(\Rightarrow \) Def. 1.

Given:
\[
 f(tx + (1 - t)y) \geq \min(f(x), f(y)).
\]

Prove:
\[
 U_K = \{ x, \ f(x) \geq K \}
\]
is a convex set.
Indeed, suppose \(x, y \in U_K \), that is \(f(x) \geq K, f(y) \geq y \). We want to prove that \(f(tx + (1 - t)y) \in U_K \), i.e. \(f(tx + (1 - t)y) \geq K \). Indeed, assume \(\min(f(x), f(y)) = f(x) \), then
\[
 f(tx + (1 - t)y \geq \min(f(x), f(y)) = f(x) \geq K.
\]

Theorem 15 A monotonic transformation \(gf \) of a quasiconcave function \(f \) is itself quasiconcave.

Proof. Take any \(K \in R \). Since \(g \) is monotonic, there exists \(K' \in R \) such that \(K = g(K') \). Then
\[
 U_K(gf) = \{ x, \ gf(x) \geq K \} = \{ x, \ gf \geq g(K') \} = \{ x, \ f(x) \geq K' \} = U_{K'}(f) \]
is a convex set.

Remark. Thus the quasiconcavity is ordinal property (recall, the concavity is cardinal: a monotonic transformation of concave is not necessarily concave, for example \(f(x) = x \) is concave, \(g(x) = x^3 \) is monotonically increasing, but \(g(f(x)) = x^3 \) is not concave).

In particular a monotonic transformation of concave is quaziconcave. But there exists quaziconcave function which is not monotonic transformation of a concave function.

Example. Every Cobb-Douglas function \(F(x_1, x_2) = Ax_1^p x_2^q, \; p, q > 0 \) is quasiconcave:

(a) As we know an DRS (Decreasing Return to Scale) Cobb-Douglas function such as \(f(x_1, x_2) = x_1^{1/3} x_2^{1/3} \) concave.

(b) An IRS (Increasing Return to Scale) Cobb-Douglas function, such as \(x_1^{2/3} x_2^{2/3} \) is quasiconcave. Indeed, IRS Cobb-Douglas is monotonic transformation of DRS Cobb-Douglas:

\[
 x_1^{2/3} x_2^{2/3} = (x_1^{1/3} x_2^{1/3})^2,
\]

so \(x_1^{2/3} x_2^{2/3} = g(f(x_1, x_2)) \) where \(f(x_1, x_2) = x_1^{1/3} x_2^{2/3} \) and \(g(z) = z^2 \).

Example. Any CES function \(Q(x, y) = (ax^r + by^r)^\frac{1}{r}, \; a, b > 0, \; 0 < r < 1 \) is quasiconcave: \(Q(x, y) = gq(x, y) \) where \(q(x, y) = (ax^r + by^r) \) is a concave function because it is positive linear combination of concave functions, and \(q(z) = z^{\frac{1}{r}} \) is monotonic transformation.

Example. Any increasing function \(f : R \to R \) is quasiconcave (and quasiconvex):

\[
 U_K = \{ x, \; f(x) \geq K \} = [f^{-1}K, +\infty)
\]
is a convex set.

Example. Each function \(f : R^1 \to R^1 \) which monotonically rises until it reaches a global maximum and the monotonically decrease, such as \(f(x) = -x^2 \), is quasiconcave: \(U_K \) is convex.

1.5.1 Calculus Criterion for Quasiconcavity

\(F \) is quasiconcave if and only if

\[
 F(y) \geq F(x) \implies DF(x)(y - x) \geq 0.
\]

\(F \) is quasiconvex if and only if

\[
 F(y) \leq F(x) \implies DF(x)(y - x) \geq 0.
\]
Exercises

1. By drawing diagrams, determine which of the following sets is convex.

 (a) \{(x, y) : y = e^x\}. (b) \{(x, y) : y \geq e^x\}. (c) \{(x, y) : xy \geq 1, x > 0, y > 0\}.

2. Determine the definiteness of the following symmetric matrices

 \[
 \begin{pmatrix}
 0 & 0 \\
 0 & 0 \\
 \end{pmatrix},
 \begin{pmatrix}
 1 & 0 \\
 0 & 0 \\
 \end{pmatrix},
 \begin{pmatrix}
 0 & 1 \\
 0 & 0 \\
 \end{pmatrix},
 \begin{pmatrix}
 1 & 1 \\
 1 & 0 \\
 \end{pmatrix},
 \begin{pmatrix}
 0 & 0 \\
 0 & 1 \\
 \end{pmatrix},
 \begin{pmatrix}
 1 & 1 \\
 1 & 1 \\
 \end{pmatrix},
 \begin{pmatrix}
 1 & 0 \\
 0 & 1 \\
 \end{pmatrix},
 \begin{pmatrix}
 1 & 1 \\
 1 & 1 \\
 \end{pmatrix}
 \]

3. For each of the following functions, determine which, if any, of the following conditions the function satisfies: concavity, strict concavity, convexity, strict convexity. (Use whatever technique is most appropriate for each case.)

 (a) \(f(x, y) = x + y \)
 (b) \(f(x, y) = x^2 \)
 (c) \(f(x, y) = x + y - e^x - e^{x+y} \)
 (d) \(f(x, y, z) = x^2 + y^2 + 3z^2 - xy + 2xz + yz \)
 (e) \(f(x, y) = 3e^x + 5x^4 - ln x \)
 (f) \(f(x, y, z) = Ax^a y^b z^c, \ a, b, c > 0. \)

4. Let \(f(x_1, x_2) = x_1^2 - x_1 x_2 + x_2^2 + 3x_1 - 2x_2 + 1. \) Is \(f \) convex, concave, or neither?

5. Prove that any homogenous function on \((0, +\infty)\) is either concave or convex.

6. Suppose that a firm that uses 2 inputs has the production function \(f(x_1, x_2) = 12x_1^{1/3}x_2^{1/2} \) and faces the input prices \((p_1, p_2)\) and the output price \(q\). Show that \(f \) is concave for \(x_1 > 0 \) and \(x_2 > 0 \), so that the firm’s profit is concave.

7. Let \(f(x_1, x_2) = x_1^3 + 2x_1^2 + 2x_1 x_2 + (1/2)x_2^2 - 8x_1 - 2x_2 - 8. \) Find the range of values of \((x_1, x_2)\) for which \(f \) is convex, if any.

8. Determine the values of \(a \) (if any) for which the function

\[
2x^2 + 2xz + 2ayz + 2z^2
\]
is concave and the values for which it is convex.

9. Show that the function \(f(w, x, y, z) = -w^2 + 2wx - x^2 - y^2 + 4yz - z^2 \) is not concave.

Homework

Exercise 21.2c from [Simon], Exercise 21.12 from [Simon], Exercise 21.18 from [Simon], Exercise 3f, Exercise 6.
Short Summary

Concave and Convex

Convex set $X \subset \mathbb{R}^n$: $x', x'' \in X \Rightarrow x^t = (1-t)x' + tx'' \in X$.

Convex hull $CH(X) = \{y \in \mathbb{R}^n : y = \sum t_i x_i, \ x_i \in X, \ \sum t_i = 1\}$.

Convex function $f : S \subset \mathbb{R}^n \to \mathbb{R}$:
$x', x'' \in S \Rightarrow (1-t)f(x') + tf(x'') \leq f((1-t)x' + tx'')$, i.e. graph is above chord.

Hypograph: $\text{hyp } f = \{(x, y) : x \in S, \ y \leq f(x)\}$. f is concave iff hyp f is convex.

Epigraph: $\text{epi } f = \{(x, y) : x \in S, \ y \geq f(x)\}$. f is convex iff epi f is convex.

Upper contour set: $U_K = \{x \in S, \ f(x) \geq K\}$. If f is concave then U_K is convex.

Lower contour set: $U_K = \{x \in S, \ f(x) \leq K\}$. If f is convex then U_L is convex.

Calculus Criteria

C^1 function $f : U \subset \mathbb{R}^n \to \mathbb{R}$ is concave iff $f(y) - f(x) \leq Df(x)(y - x)$.

C^2 function $f : U \subset \mathbb{R}^n \to \mathbb{R}$ is concave iff $D^2f(x) \leq 0$.

Concavity and Optimization

If f is concave and $D(x^*) = 0$ then x^* is global max.
If f is concave and $Df(x^*)(y - x^*) \leq 0$ for $\forall y$ then x^* is global max.

Quaziconcavity

f quasiconcave if $U_K = \{x : f(x) \geq K\}, \ \forall K$. Equivalently

$$f(tx + (1-t)y) \geq \min(f(x), f(y)), \ \forall \ x, y, \ t \in [0,1].$$

Concavity - cardinal, quasiconcavity - ordinal.

Calculus Criterion

F is quasiconcave iff

$$F(y) \geq F(x) \ \Rightarrow \ \ DF(x)(y - x) \geq 0.$$