Lattices and Topology

Exercises for Lecture 3

1. Let X be a topological space and $A, B \subseteq X$.

1a. Show that $\operatorname{int}(A) \subseteq \operatorname{int}(\operatorname{int}(A))$ and $\operatorname{int}(A \cap B)=\operatorname{int}(A) \cap \operatorname{int}(B)$. By a dual argument, show that $\overline{\bar{A}} \subseteq \bar{A}$ and $\overline{A \cup B}=\bar{A} \cup \bar{B}$.

1b. Prove that $\operatorname{int}(A)=X-\overline{X-A}$ and $\bar{A}=X-\operatorname{int}(X-A)$.
2. Let X be a set, and i : $\mathscr{P}(X) \rightarrow \mathscr{P}(X)$ be a function satisfying

- $\mathrm{i}(X)=X$,
- $\mathrm{i}(A) \subseteq A$,
- $\mathrm{i}(A) \subseteq \mathrm{i}(\mathrm{i}(A))$,
- $\mathrm{i}(A \cap B)=\mathrm{i}(A) \cap \mathrm{i}(B)$.

2a. Show that $\tau=\{A \subseteq X: \mathrm{i}(A)=A\}$ is a topology on X.
2b. Prove that every topology on X is obtained this way.
3. Let (X, τ) be a topological space and $Y \subseteq X$. Set $\tau_{Y}=\{U \cap Y: U \in \tau\}$. Show that τ_{Y} is a topology on Y.
4. Prove that the subspace topology of any finite subset of the real line \mathbb{R} is discrete.
5. Let (P, \leqslant) and $\left(P^{\prime}, \leqslant^{\prime}\right)$ be posets and τ_{\leqslant}and τ_{\leqslant}be the corresponding Alexandroff topologies.

5a. Show that a map $f:\left(P, \tau_{\leqslant}\right) \rightarrow\left(P^{\prime}, \tau_{\leqslant}\right)$is continuous iff $f:(P, \leqslant) \rightarrow\left(P^{\prime}, \leqslant^{\prime}\right)$ is orderpreserving.

5b. Show that $f:\left(P, \tau_{\leqslant}\right) \rightarrow\left(P^{\prime}, \tau_{\leqslant^{\prime}}\right)$ is a homeomorphism iff $f:(P, \leqslant) \rightarrow\left(P^{\prime}, \leqslant^{\prime}\right)$ is an order-isomorphism.
6. Prove that a space X is T_{1} iff each singleton subset of X is closed. Deduce that each finite T_{1}-space is discrete.
7. Let X be a topological space and $x \in X$. Show that $\overline{\{x\}}$ is a join-prime element of the lattice of closed subsets of X.
8. Let X be a topological space.

8a. Show that for each $x, y \in X$ we have $x \in \overline{\{y\}}$ iff $\overline{\{x\}} \subseteq \overline{\{y\}}$.
8b. Prove that X is T_{0} iff for each $x, y \in X$, from $\overline{\{x\}}=\overline{\{y\}}$ it follows that $x=y$.
8c. Deduce that each sober space is T_{0}.
9. Show that the cofinite topology on an infinite set is not sober.

10*. Prove that each Hausdorff space is sober.
11. Let X be a topological space. Show that the specialization order of X is reflexive and transitive, and that it is antisymmetric iff X is T_{0}.
12. Let (P, \leqslant) be a poset. Prove that $\leqslant_{\tau \leqslant}=\leqslant$.
13. Let (X, τ) be a topological space.

13a. Show that $\tau \subseteq \tau_{\leqslant_{\tau}}$.
13b. Prove that $\tau=\tau_{\leqslant \tau}$ iff τ is an Alexandroff topology.
14. Show that each cofinite topology is compact.
15^{*}. Prove that a subset of \mathbb{Q} is compact iff it is finite.
16. Let X be the following subset of $[0,1]$:

$$
X=\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots, 0\right\}
$$

Equip X with the subspace topology.
16a. Show that X is compact.
16b. Prove that a subset of X is clopen iff either it is a finite subset of X not containing 0 or it is a cofinite subset of X containing 0 .
$16 c$. Deduce that X is a Stone space.

