Lattices and Topology

Exercises for Lecture 3

1. Let X be a topological space and $A, B \subseteq X$.

1a. Show that $\operatorname{int}(A) \subseteq \operatorname{int}(\operatorname{int}(A))$ and $\operatorname{int}(A \cap B) = \operatorname{int}(A) \cap \operatorname{int}(B)$. By a dual argument, show that $\overline{\overline{A}} \subseteq \overline{A}$ and $\overline{A \cup B} = \overline{A} \cup \overline{B}$.

1b. Prove that $int(A) = X - \overline{X - A}$ and $\overline{A} = X - int(X - A)$.

2. Let X be a set, and $i: \mathscr{P}(X) \to \mathscr{P}(X)$ be a function satisfying

- i(X) = X,
- $i(A) \subseteq A$,
- $i(A) \subseteq i(i(A)),$
- $i(A \cap B) = i(A) \cap i(B)$.

2a. Show that $\tau = \{A \subseteq X : i(A) = A\}$ is a topology on X.

2b. Prove that every topology on X is obtained this way.

3. Let (X, τ) be a topological space and $Y \subseteq X$. Set $\tau_Y = \{U \cap Y : U \in \tau\}$. Show that τ_Y is a topology on Y.

4. Prove that the subspace topology of any finite subset of the real line \mathbb{R} is discrete.

5. Let (P, \leq) and (P', \leq') be posets and τ_{\leq} and $\tau_{\leq'}$ be the corresponding Alexandroff topologies. 5a. Show that a map $f : (P, \tau_{\leq}) \to (P', \tau_{\leq'})$ is continuous iff $f : (P, \leq) \to (P', \leq')$ is orderpreserving.

5b. Show that $f: (P, \tau_{\leq}) \to (P', \tau_{\leq'})$ is a homeomorphism iff $f: (P, \leq) \to (P', \leq')$ is an order-isomorphism.

6. Prove that a space X is T_1 iff each singleton subset of X is closed. Deduce that each finite T_1 -space is discrete.

7. Let X be a topological space and $x \in X$. Show that $\overline{\{x\}}$ is a join-prime element of the lattice of closed subsets of X.

8. Let X be a topological space.

- 8a. Show that for each $x, y \in X$ we have $x \in \overline{\{y\}}$ iff $\overline{\{x\}} \subseteq \{y\}$.
- 8b. Prove that X is T₀ iff for each $x, y \in X$, from $\overline{\{x\}} = \overline{\{y\}}$ it follows that x = y.
- 8c. Deduce that each sober space is T_0 .

9. Show that the cofinite topology on an infinite set is not sober.

 10^* . Prove that each Hausdorff space is sober.

11. Let X be a topological space. Show that the specialization order of X is reflexive and transitive, and that it is antisymmetric iff X is T_0 .

12. Let (P, \leq) be a poset. Prove that $\leq_{\tau_{\leq}} = \leq$.

13. Let (X, τ) be a topological space. 13a. Show that $\tau \subseteq \tau_{\leq \tau}$. 13b. Prove that $\tau = \tau_{\leq \tau}$ iff τ is an Alexandroff topology.

- 14. Show that each cofinite topology is compact.
- 15*. Prove that a subset of $\mathbb Q$ is compact iff it is finite.
- 16. Let X be the following subset of [0, 1]:

$$X=\{1,\frac{1}{2},\frac{1}{3},\frac{1}{4},...,0\}.$$

Equip X with the subspace topology.

16a. Show that X is compact.

16b. Prove that a subset of X is clopen iff either it is a finite subset of X not containing 0 or it is a cofinite subset of X containing 0.

16c. Deduce that X is a Stone space.