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Review of lecture 4

We have described the Priestley topology on the set of
prime filters of a bounded distributive lattice.

We have defined Priestley spaces as ordered Stone spaces
satisfying the Priestley separation axiom.

We showed that the space of prime filters of a bounded
distributive lattice is a Priestley space.

We described the resulting Priestley duality between
bounded distributive lattices and Priestley spaces.

We saw how the Priestley duality results in the
representation of a bounded distributive lattice as the
lattice of clopen upsets of a Priestley space.
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Review of lecture 4

We saw how the Birkhoff duality from lecture 2 is a
particular case of the Priestley duality.

We derived the Stone duality between Boolean lattices and
Stone spaces from the Priestley duality.

We saw how the Stone duality results in the representation
of Boolean lattices as lattices of clopen sets of a Stone
space.

We introduced Esakia spaces and obtained the Esakia
duality between Heyting lattices and Esakia spaces from the
Priestley duality.

We saw how the Esakia duality gives representation of
Heyting lattices as lattices of clopen upsets of Esakia spaces.
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Spectral duality

Distributive lattices in logic

Relational completeness of IPC and CPC

Topological completeness of IPC and CPC
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Spectral topology

In the previous lecture we showed how to develop a nice
representation of distributive, Heyting, and Boolean lattices by
means of Priestley, Esakia, and Stone spaces, respectively.

One disadvantage of the Priestley duality is that it requires both
topology and order to represent distributive lattices. We will
show that we can do away with the order.

To see this, let L be a bounded distributive lattice. We again
work with the set X (L) of prime filters of L. But now we ignore
set-theoretic inclusion on prime filters. Instead we define a
different topology on X (L).

This is how it was done originally by Marshall Stone back in
1937. For some this is the most natural way to define topology
on the dual of L.
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The Priestley topology as the patch topology

We look at the set S = {φ(a) : a ∈ L}.

Since φ(0) = ∅, φ(1) = X (L), and φ(a ∧ b) = φ(a) ∩ φ(b),
S contains ∅, X (L) and is closed under finite intersections.

In addition, as φ(a ∨ b) = φ(a) ∪ φ(b), S is closed under finite
unions. But in general S is not closed under arbitrary unions.
Thus it does not form a topology.

We generate a topology from S by closing S under arbitrary
unions. We call the obtained topology the spectral topology and
denote it by τS.
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The Priestley topology as the patch topology

Thus we have two topologies on X (L)—the Priestley topology
τP and the spectral topology τS.

How are these two topologies
related to each other?

We recall that τP is generated by B = {φ(a)− φ(b) : a, b ∈ L}
and τS is generated by S = {φ(a) : a ∈ L}. It follows at once that
τS is a subtopology of τP, that is τS ⊆ τP.

But more is true. In fact, each element of B is the intersection
of an element of S and set-theoretic complement of an element
of S. Thus τP is generated by the set

{U ∩ F : U ∈ S and X (L)− F ∈ S}.

When one topology is obtained from another this way, it is
known in the literature as the patch topology. Therefore τP is
the patch topology of τS.
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From spectral topology to Priestley topology

Consequently we can recover the Priestley topology τP from the
spectral topology τS by taking the patch topology of τS.

But how can we recover set-theoretic inclusion from τS? This
can be done through the specialization order.

Lemma: ⊆ is the specialization order of (X (L), τS).

Proof: For two prime filters x, y we have
x ⊆ y iff (∀a ∈ L)(a ∈ x implies a ∈ y). Therefore
x ⊆ y iff (∀a ∈ L)(x ∈ φ(a) implies y ∈ φ(a)).
Since S generates τS, it follows that
x ⊆ y iff (∀U ∈ τS)(x ∈ U implies y ∈ U).
Thus ⊆ is the specialization order of (X (L), τS).
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From Priestley topology to spectral topology

Therefore we obtain full balance between (X (L),⊆, τP) and
(X (L), τS).

Given (X (L),⊆, τP), we take the open upsets of (X (L),⊆, τP) to
obtain (X (L), τS); and conversely, given (X (L), τS) we take the
patch topology of τS with the specialization order of τS to obtain
(X (L),⊆, τP).
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Spectral spaces

What we haven’t addressed yet is an abstract topological
characterization of those spaces which are homeomorphic to
(X (L), τS) for some bounded distributive lattice L.

We do this
now.

Since τS is a subtopology of τP and τP is compact, it follows that
so is τS.

We show that τS is T0. Let x 6= y. Then either x 6⊆ y or y 6⊆ x.
Without loss of generality we may assume that x 6⊆ y. Therefore
there exists a ∈ x − y. Thus x ∈ φ(a) and y /∈ φ(a). This means
that there exists a τS-open set containing x and missing y.
Consequently τS is T0.
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Spectral spaces

In addition, we have that the clopen upsets of (X (L),⊆, τP) are
exactly those open subsets of (X (L), τS) which are compact.

The proof of this fact requires some work. We skip the details.

As a result, we obtain that the family E(X (L), τS) of compact
open subsets of (X (L), τS) is a bounded sublattice of τS which
generates the topology τS. Such spaces are usually called
coherent.

Thus (X (L), τS) is T0, compact, and coherent. In fact,
(X (L), τS) is also a sober space. Because of the lack of time we
skip the details.

Thus we obtain that (X (L), τS) is compact, coherent, and sober.

Definition: We call a space spectral if it is compact, coherent,
and sober.
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Thus (X (L), τS) is a spectral space.

Moreover, since there is a
full balance between (X (L), τS) and (X (L),⊆, τP) and each
Priestley space is of the form (X (L),⊆, τP) for some bounded
distributive lattice L, we obtain that each spectral space is of the
form (X (L), τS) for some bounded distributive lattice L.

This establishes several theorems at once. For one, we obtain
that there is a complete balance between Priestley spaces and
spectral spaces. This result was first established by Cornish back
in 1975.

It also shows that there’s a complete balance between bounded
distributive lattices and spectral spaces—a result going back to
Stone. In particular, this gives us another representation
theorem for bounded distributive lattices:
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Spectral duality

Stone’s representation of bounded distributive lattices: Each
bounded distributive lattice is represented as the lattice of
compact open subsets of a spectral space.

In particular, this implies the following representation of
bounded distributive lattices.

Topological representation theorem: Each bounded
distributive lattice is isomorphic to a sublattice of τS. Therefore
each bounded distributive lattice can be represented as a
sublattice of the lattice of open subsets of some topological
space.
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Spectral duality

Remark: Note that in fact we have several topological
representation theorems for bounded distributive lattices.

In Lecture 2 we showed that each bounded distributive lattice L
is isomorphic to a sublattice of the lattice of upsets of
(X (L),⊆). This in fact is already a topological representation of
L because we can view X (L) as a topological space with the
Alexandroff topology τ⊆.

In Lecture 4 we showed that L is isomorphic to the lattice of
clopen upsets of the Priestley dual L∗ = (X (L),⊆, τP) of L. This
can be viewed as another topological representation of L since L
becomes isomorphic to a sublattice of the lattice of open subsets
of (X (L), τP).

In a sense, the topological representation that we obtained in
this lecture is the “most economical” because the spectral
topology is in fact the intersection of the Alexandroff and the
Priestley topologies. That is, τS = τ⊆ ∩ τP.
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As a result, we obtain two dualities for bounded distributive
lattices.

One is the Priestley duality. The other is the spectral
duality. Moreover, in a sense, the Priestley and spectral dualities
are different sides of the same coin, as follows from Cornish’s
theorem.

Thus we can develop a duality for distributive lattices by means
of either topology and order—Priestley duality—where topology
behaves rather nicely; or only by means of topology—spectral
duality—but then the topology is not as nice as in the other case.
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Spectral duality

It is a tradeoff;

and we invite the audience to choose for
themselves which duality is their favorite. We only mention that
there is yet another duality for bounded distributive lattices by
means of bitopological spaces, but it is beyond this course.

We refer the interested reader to the following paper, which
develops it in detail:

G. Bezhanishvili, N. Bezhanishvili, D. Gabelaia, A. Kurz.
Bitopological duality for distributive lattices and Heyting algebras,
available at http://www.cs.le.ac.uk/people/nb118/
Publications/PairwiseStone.pdf

http://www.cs.le.ac.uk/people/nb118/Publications/PairwiseStone.pdf
http://www.cs.le.ac.uk/people/nb118/Publications/PairwiseStone.pdf


Spectral duality

It is a tradeoff; and we invite the audience to choose for
themselves which duality is their favorite.

We only mention that
there is yet another duality for bounded distributive lattices by
means of bitopological spaces, but it is beyond this course.

We refer the interested reader to the following paper, which
develops it in detail:

G. Bezhanishvili, N. Bezhanishvili, D. Gabelaia, A. Kurz.
Bitopological duality for distributive lattices and Heyting algebras,
available at http://www.cs.le.ac.uk/people/nb118/
Publications/PairwiseStone.pdf

http://www.cs.le.ac.uk/people/nb118/Publications/PairwiseStone.pdf
http://www.cs.le.ac.uk/people/nb118/Publications/PairwiseStone.pdf


Spectral duality

It is a tradeoff; and we invite the audience to choose for
themselves which duality is their favorite. We only mention that
there is yet another duality for bounded distributive lattices by
means of bitopological spaces,

but it is beyond this course.

We refer the interested reader to the following paper, which
develops it in detail:

G. Bezhanishvili, N. Bezhanishvili, D. Gabelaia, A. Kurz.
Bitopological duality for distributive lattices and Heyting algebras,
available at http://www.cs.le.ac.uk/people/nb118/
Publications/PairwiseStone.pdf

http://www.cs.le.ac.uk/people/nb118/Publications/PairwiseStone.pdf
http://www.cs.le.ac.uk/people/nb118/Publications/PairwiseStone.pdf


Spectral duality

It is a tradeoff; and we invite the audience to choose for
themselves which duality is their favorite. We only mention that
there is yet another duality for bounded distributive lattices by
means of bitopological spaces, but it is beyond this course.

We refer the interested reader to the following paper, which
develops it in detail:

G. Bezhanishvili, N. Bezhanishvili, D. Gabelaia, A. Kurz.
Bitopological duality for distributive lattices and Heyting algebras,
available at http://www.cs.le.ac.uk/people/nb118/
Publications/PairwiseStone.pdf

http://www.cs.le.ac.uk/people/nb118/Publications/PairwiseStone.pdf
http://www.cs.le.ac.uk/people/nb118/Publications/PairwiseStone.pdf


Spectral duality

It is a tradeoff; and we invite the audience to choose for
themselves which duality is their favorite. We only mention that
there is yet another duality for bounded distributive lattices by
means of bitopological spaces, but it is beyond this course.

We refer the interested reader to the following paper, which
develops it in detail:

G. Bezhanishvili, N. Bezhanishvili, D. Gabelaia, A. Kurz.
Bitopological duality for distributive lattices and Heyting algebras,
available at http://www.cs.le.ac.uk/people/nb118/
Publications/PairwiseStone.pdf

http://www.cs.le.ac.uk/people/nb118/Publications/PairwiseStone.pdf
http://www.cs.le.ac.uk/people/nb118/Publications/PairwiseStone.pdf


Spectral duality

It is a tradeoff; and we invite the audience to choose for
themselves which duality is their favorite. We only mention that
there is yet another duality for bounded distributive lattices by
means of bitopological spaces, but it is beyond this course.

We refer the interested reader to the following paper, which
develops it in detail:

G. Bezhanishvili, N. Bezhanishvili, D. Gabelaia, A. Kurz.
Bitopological duality for distributive lattices and Heyting algebras,
available at http://www.cs.le.ac.uk/people/nb118/
Publications/PairwiseStone.pdf

http://www.cs.le.ac.uk/people/nb118/Publications/PairwiseStone.pdf
http://www.cs.le.ac.uk/people/nb118/Publications/PairwiseStone.pdf


Distributive lattices in logic

We conclude this series of lectures by showing how one can
apply the developed theory to obtain various completeness
results in logic.

The representation theorems that we obtained in previous
lectures readily provide completeness theorems for the
following propositional logical systems:
Intuitionistic Propositional Calculus (IPC),
Classical Propositional Calculus (CPC),
and their implication-free fragments.

Formulæ of these calculi are built from propositional variables p,
q, ..., logical constants > (“true”) and ⊥ (“false”), and logical
connectives ∧ (conjunction), ∨ (disjunction), and→
(implication).
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Distributive lattices in logic

One possible description of these systems is based on sequent
calculus.

Recall that a sequent Γ ` ∆ is an ordered pair where
Γ = ϕ1, ..., ϕm and ∆ = ψ1, ..., ψn are (possibly empty) finite
tuples of formulæ, called contexts.

Our systems can be axiomatized using the inference rules of the
form

Γ1 ` ∆1, . . . , Γk ` ∆k

Γ ` ∆
“from sequents Γ1 ` ∆1, ... Γk ` ∆k infer the sequent Γ ` ∆.”

A proof in each of the systems consists of a succession of
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known and thoroughly investigated) systems;

in fact, we will
see below that the description of the semantics precisely reflects
the nature of the corresponding inference rules.

In the semantics that we will consider,
the formulæ will be interpreted by elements of a bounded
distributive lattice;
those of IPC will be interpreted by elements of a Heyting lattice;
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Moreover, conjunction will be interpreted by meet, disjunction
by join, and implication by the Heyting implication in case of
IPC and by the Boolean implication in case of CPC.
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Algebraic semantics

A model of one of our calculi in this semantics thus consists of a
bounded distributive lattice L together with a valuation – an
assignment to each propositional variable p of an element
v(p) ∈ L.

The valuation is then extended to all formulæ by induction:
v(>) = 1,
v(⊥) = 0,
v(ϕ ∧ ψ) = v(ϕ) ∧ v(ψ),
v(ϕ ∨ ψ) = v(ϕ) ∨ v(ψ),
and for IPC (resp. CPC), L must be a Heyting lattice (resp.
Boolean lattice), and additionally
v(ϕ→ ψ) = v(ϕ)→ v(ψ).
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Algebraic semantics

A sequent ϕ1, ..., ϕm ` ψ1, ..., ψn is said to be true in such a
model if

v(ϕ1) ∧ · · · ∧ v(ϕm) 6 v(ψ1) ∨ · · · ∨ v(ψn)

holds true in the lattice L.

A calculus is said to be sound with respect to this semantics if
any sequent which is derivable starting “from nothing”, i. e.
starting from an empty succession of sequents, is true in all
models of this semantics.

In principle the only thing we need to know about the inference
rules is that they ensure soundness of the corresponding system
with respect to the semantics.
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Algebraic semantics

As a simple example, the inference rule

ϕ ` ϕ

corresponds to 6 to be reflexive in our lattice.

As a more complicated example, consider the cut rule

Γ1 ` ∆1, ϕ ϕ,Γ2 ` ∆2

Γ1,Γ2 ` ∆1,∆2
.

This rule corresponds to the fact that in any distributive lattice,
if

a1 6 b1 ∨ c and c ∧ a2 6 b2,

then
a1 ∧ a2 6 b1 ∨ b2.
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Completeness

A calculus is said to be complete with respect to a class of
models in this semantics if any sequent which is true in all
models from that class is derivable in the above sense.

A standard technique to prove completeness of a given calculus
is the well-known Lindenbaum-Tarski construction. Namely, one
can take the lattice of provable equivalence classes of formulæ.

The formulæ ϕ and ψ are called provably equivalent if the
sequents ϕ ` ψ and ψ ` ϕ are both derivable in the calculus.

Identifying provably equivalent formulæ one obtains a lattice of
appropriate type equipped with the valuation v which assigns to
a formula ϕ its equivalence class.

In this way, we obtain a model, and it is then not difficult to see
that a sequent is derivable iff it is true in this model.
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Completeness

However the Lindenbaum-Tarski construction as a rule produces
a large lattice which is very difficult to describe.

That’s where the representation theorems can help. One of their
virtues is that they provide completeness of our calculi with
respect to the models whose underlying lattices are easier to
work with.

Our first representation theorem of Lecture 2 implies that each
bounded distributive lattice L is isomorphic to a sublattice of the
lattice U (P) of upsets of some poset P.

This theorem implies that the implication-free fragment of IPC
is complete with respect to the relational semantics—the
semantics in which the only models allowed are those in which
formulæ are interpreted as upsets of a poset P, the conjunction
as set-theoretic intersection, and the disjunction as set-theoretic
union.
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Relational completeness

Similarly, the representation of Heyting lattices provides us with
the following completeness of IPC:

Relational completeness of IPC: If we interpret formulæ of IPC
as upsets, ∧ as set-theoretic intersection, ∨ as set-theoretic
union, and φ→ ψ as

P− ↓(ν(ϕ)− ν(ψ))
= {w ∈ P : for all w′ > w, if w′ ∈ ν(ϕ), then w′ ∈ ν(ψ) },

then IPC is complete with respect to the class of all posets.

For those familiar with Kripke semantics of IPC, the above
completeness is just a reformulation of the Kripke completeness
of IPC. Put differently, Kripke completeness of IPC is nothing
more but a representation of Heyting lattices as lattices of
upsets of posets!
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Completeness for CPC

In the case of Boolean lattices the order 6 of the poset P
becomes trivial.

Thus we arrive at the following well-known
completeness of CPC:

Completeness of CPC: If we interpret formulæ of CPC as
subsets of a set, ∧ as set-theoretic intersection, ∨ as set-theoretic
union, and φ→ ψ as (S− ν(ϕ)) ∪ ν(ψ), then CPC is complete
with respect to the class of all sets.
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from the thirties.

On the other hand, IPC is complete with respect to an infinite
class of finite models—another famous result from the thirties
by Stanislaw Jaśkowski.
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semantics in which the only models allowed are those in which
formulæ are interpreted as open subsets of a topological space
X, the conjunction as set-theoretic intersection, and the
disjunction as set-theoretic union.



Topological completeness

Our topological representation theorem implies that each
bounded distributive lattice L is isomorphic to a sublattice of the
lattice of all open subsets of some topological space X.

This theorem implies that the implication-free fragment of IPC
is complete with respect to the topological semantics—the
semantics in which the only models allowed are those in which
formulæ are interpreted as open subsets of a topological space
X, the conjunction as set-theoretic intersection, and the
disjunction as set-theoretic union.



Topological completeness

The topological representation of Heyting lattices provides us
with the following completeness of IPC, established by Tarski in
the late 1930ies:

Topological completeness of IPC: If we interpret formulæ of
IPC as open subsets, ∧ as set-theoretic intersection, ∨ as
set-theoretic union, and φ→ ψ as

X − ν(ϕ)− ν(ψ) = int
(
(X − ν(ϕ)) ∪ ν(ψ)

)
,

then IPC is complete with respect to the class of all topological
spaces.



Topological completeness

The topological representation of Heyting lattices provides us
with the following completeness of IPC, established by Tarski in
the late 1930ies:

Topological completeness of IPC: If we interpret formulæ of
IPC as open subsets, ∧ as set-theoretic intersection, ∨ as
set-theoretic union, and φ→ ψ as

X − ν(ϕ)− ν(ψ) = int
(
(X − ν(ϕ)) ∪ ν(ψ)

)
,

then IPC is complete with respect to the class of all topological
spaces.



Topological completeness

Similarly, the topological representation of Boolean lattices
provides us with the following completeness of CPC:
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with respect to the class of all topological spaces.

In fact for CPC, as we already saw, it is enough to restrict our
attention to discrete spaces or even to a single one-element
space.

This restriction is again not possible in the case of IPC.
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We have extended the Birkhoff duality to the Priestley
duality.

We have obtained the Stone duality for Boolean lattices and
the Esakia duality for Heyting lattices from the Priestley
duality.

We have also developed the spectral duality which is an
alternative of the Priestley duality.

As a result we have obtained relational and topological
representations of bounded distributive lattices, Heyting
lattices, and Boolean lattices.

We have given applications of these representation
theorems to logic. In particular, we have discussed several
relational and topological completeness theorems for the
intuitionistic and classical logics, and their implication-free
fragments.
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