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Review of lecture 3

The previous lecture was dedicated to topology.

We defined topological spaces; introduced the concepts of
open and closed sets, and of the interior and closure of a
set.

We defined subspaces, continuous maps, and
homeomorphisms.

We also introduced T0, T1, Hausdorff, and sober spaces.

We described the specialization order of a T0-space and
discussed the complete balance between Alexandroff
T0-spaces and posets. In particular, we discussed the
complete balance between finite T0-spaces and finite
posets.
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Review of lecture 3

We defined compact spaces.

We showed that a closed subspace of a compact space is
compact, and that the image of a compact space under a
continuous map is compact.

We also showed that a subset of a compact Hausdorff space
is compact iff it is closed.

In addition, we showed that each 1-1 onto continuous map
between compact Hausdorff spaces is a homeomorphism.

We concluded the lecture by defining Stone spaces and
giving some nontrivial examples of Stone spaces.
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Introduction

In Lecture 2 we developed representation theory for distributive
lattices

which gave us a representation of a distributive lattice
as a sublattice of the lattice of upsets of some poset.

In order to single out this sublattice we developed all the
necessary background from topology in Lecture 3.

The main goal of this lecture is to take advantage of the
topological machinery which will allow us to characterize the
needed sublattice by the hybrid of order-theoretic and
topological methods.
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Priestley topology

Let L be a bounded distributive lattice.

Recall that L is
represented as a sublattice of the lattice of all upsets of the
poset (X (L),⊆) of prime filters of L, and that the representation
is achieved by the map φ : L→ U (X (L)):

φ(a) = {x ∈X (L) : a ∈ x}.

There are several ways to define topology on X (L). We start by
describing the topology introduced by Hilary Priestley back in
1970.

Consider the following collection

B = {φ(a)− φ(b) : a, b ∈ L}

of subsets of X (L).
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Priestley topology

Since φ(0) = ∅ and φ(1) = X (L),

both ∅ and X (L) belong to B.

Lemma: If U,V ∈ B, then U ∩ V ∈ B.

Proof: Let U,V ∈ B. Then there exist a, b, c, d ∈ L such that
U = φ(a)− φ(b) and V = φ(c)− φ(d). Therefore

U ∩ V = (φ(a)− φ(b)) ∩ (φ(c)− φ(d))
= (φ(a) ∩ φ(c)) ∩ (X (L)− (φ(b) ∪ φ(d)))
= φ(a ∧ c) ∩ (X (L)− φ(b ∨ d))
= φ(a ∧ c)− φ(b ∨ d).
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Priestley topology

On the other hand, B is not closed under arbitrary unions in
general.

Therefore B is not a topology on X (L).

We simply generate a topology from B by closing B under
arbitrary unions. We refer to it as the Priestley topology and
denote it by τP.

Thus from each bounded distributive lattice L we obtain the
triple L∗ = (X (L),⊆, τP). The obtained triple is a hybrid of
order and topology. Indeed (X (L),⊆) is a poset and (X (L), τP)
is a topological space.

We give an abstract characterization of such spaces.
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Priestley topology

Theorem: The Priestley topology is compact.

Proof: We need to show that each cover of X (L) by elements of
τP has a finite subcover. Since B generates τP, it is sufficient to
show that each cover of X (L) by elements of B has a finite
subcover.

Further reduction is possible thanks to the Alexander subbasis
lemma which states that if the topology is generated by the
unions of finite intersections of a given family S, then in order
to verify compactness of the space, it is sufficient to verify that
each cover of the space by elements of S has a finite subcover.
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We will not prove Alexander’s lemma here.

But we will take
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Since F ∩ I 6= ∅, there exists c ∈ L such that bδ1 ∧ · · · ∧ bδn ≤ c for
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and
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X (L), which implies that there is a finite subcover of X (L).
Thus (X (L), τP) is compact.
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Priestley duality

For a bounded distributive lattice L, let L∗ = (X (L),⊆, τP).

Theorem: If L is a bounded distributive lattice, then L∗ is a
Priestley space.

Proof: It is obvious that (X (L),⊆) is a poset. We already
showed that (X (L), τP) is a compact space. It is left to verify
that L∗ satisfies the Priestley separation axiom. Let x 6⊆ y. Then
there exists a ∈ x − y. Therefore x ∈ φ(a) and y /∈ φ(a). We
already verified that φ(a) is an upset. Moreover both φ(a) and
X (L)− φ(a) belong to B. Therefore φ(a) is clopen.
Consequently L∗ is a Priestley space.

Thus, every bounded distributive lattice L gives rise to the
Priestley space L∗.
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Conversely, for each Priestley space (X,≤, τ), let X∗ be the set of
clopen upsets of X.

Lemma: (X∗,∪,∩, ∅,X) forms a bounded distributive lattice.

Proof: Clearly ∅ and X are clopen upsets, and the union and
intersection of two clopens is again clopen. Since ∪ and ∩
distribute over each other, it follows that (X∗,∪,∩, ∅,X) forms a
bounded distributive lattice.
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This means that U =
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{φ(a) : φ(a) ⊆ U}. Since U is closed, it is

compact.

As {φ(a) : φ(a) ⊆ U} is an open cover of U, there is a finite
subcover. But a finite union of elements of the form φ(a) is
again of the same form.

Therefore there is a ∈ L such that φ(a) = U and so φ is onto.
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Priestley duality

As a result, we obtain the following representation of bounded
distributive lattices:

Priestley’s representation of bounded distributive lattices:
Each bounded distributive lattice is isomorphic to the lattice of
all clopen upsets of a Priestley space.

Going the other way, we would like to show that X is
order-homeomorphic to X∗

∗.

Define ψ : X → X∗
∗ by

ψ(x) = {U ∈ X∗ : x ∈ U}

Then it is straightforward to verify that ψ is well-defined.
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Priestley duality

Moreover, one can also show that ψ is a continuous
order-isomorphism.

We will skip the details because this result
is not absolutely necessary for our purposes.

We only mention that since we work with compact Hausdorff
spaces, it follows that ψ : X → X∗

∗ is an order-homeomorphism.

This implies that each Priestley space arises up to
order-homeomorphism as the Priestley space of some bounded
distributive lattice.

This establishes complete balance between bounded distributive
lattices and Priestley spaces. In fact it can also be extended to a
complete balance between bounded lattice homomorphisms and
order-preserving continuous maps. We refer to it as the Priestley
duality. Because of the lack of time, we will not address the
details here.



Priestley duality

Moreover, one can also show that ψ is a continuous
order-isomorphism. We will skip the details because this result
is not absolutely necessary for our purposes.

We only mention that since we work with compact Hausdorff
spaces, it follows that ψ : X → X∗

∗ is an order-homeomorphism.

This implies that each Priestley space arises up to
order-homeomorphism as the Priestley space of some bounded
distributive lattice.

This establishes complete balance between bounded distributive
lattices and Priestley spaces. In fact it can also be extended to a
complete balance between bounded lattice homomorphisms and
order-preserving continuous maps. We refer to it as the Priestley
duality. Because of the lack of time, we will not address the
details here.



Priestley duality

Moreover, one can also show that ψ is a continuous
order-isomorphism. We will skip the details because this result
is not absolutely necessary for our purposes.

We only mention that since we work with compact Hausdorff
spaces, it follows that ψ : X → X∗

∗ is an order-homeomorphism.

This implies that each Priestley space arises up to
order-homeomorphism as the Priestley space of some bounded
distributive lattice.

This establishes complete balance between bounded distributive
lattices and Priestley spaces. In fact it can also be extended to a
complete balance between bounded lattice homomorphisms and
order-preserving continuous maps. We refer to it as the Priestley
duality. Because of the lack of time, we will not address the
details here.



Priestley duality

Moreover, one can also show that ψ is a continuous
order-isomorphism. We will skip the details because this result
is not absolutely necessary for our purposes.

We only mention that since we work with compact Hausdorff
spaces, it follows that ψ : X → X∗

∗ is an order-homeomorphism.

This implies that each Priestley space arises up to
order-homeomorphism as the Priestley space of some bounded
distributive lattice.

This establishes complete balance between bounded distributive
lattices and Priestley spaces. In fact it can also be extended to a
complete balance between bounded lattice homomorphisms and
order-preserving continuous maps. We refer to it as the Priestley
duality. Because of the lack of time, we will not address the
details here.



Priestley duality

Moreover, one can also show that ψ is a continuous
order-isomorphism. We will skip the details because this result
is not absolutely necessary for our purposes.

We only mention that since we work with compact Hausdorff
spaces, it follows that ψ : X → X∗

∗ is an order-homeomorphism.

This implies that each Priestley space arises up to
order-homeomorphism as the Priestley space of some bounded
distributive lattice.

This establishes complete balance between bounded distributive
lattices and Priestley spaces.

In fact it can also be extended to a
complete balance between bounded lattice homomorphisms and
order-preserving continuous maps. We refer to it as the Priestley
duality. Because of the lack of time, we will not address the
details here.



Priestley duality

Moreover, one can also show that ψ is a continuous
order-isomorphism. We will skip the details because this result
is not absolutely necessary for our purposes.

We only mention that since we work with compact Hausdorff
spaces, it follows that ψ : X → X∗

∗ is an order-homeomorphism.

This implies that each Priestley space arises up to
order-homeomorphism as the Priestley space of some bounded
distributive lattice.

This establishes complete balance between bounded distributive
lattices and Priestley spaces. In fact it can also be extended to a
complete balance between bounded lattice homomorphisms and
order-preserving continuous maps.

We refer to it as the Priestley
duality. Because of the lack of time, we will not address the
details here.



Priestley duality

Moreover, one can also show that ψ is a continuous
order-isomorphism. We will skip the details because this result
is not absolutely necessary for our purposes.

We only mention that since we work with compact Hausdorff
spaces, it follows that ψ : X → X∗

∗ is an order-homeomorphism.

This implies that each Priestley space arises up to
order-homeomorphism as the Priestley space of some bounded
distributive lattice.

This establishes complete balance between bounded distributive
lattices and Priestley spaces. In fact it can also be extended to a
complete balance between bounded lattice homomorphisms and
order-preserving continuous maps. We refer to it as the Priestley
duality.

Because of the lack of time, we will not address the
details here.



Priestley duality

Moreover, one can also show that ψ is a continuous
order-isomorphism. We will skip the details because this result
is not absolutely necessary for our purposes.

We only mention that since we work with compact Hausdorff
spaces, it follows that ψ : X → X∗

∗ is an order-homeomorphism.

This implies that each Priestley space arises up to
order-homeomorphism as the Priestley space of some bounded
distributive lattice.

This establishes complete balance between bounded distributive
lattices and Priestley spaces. In fact it can also be extended to a
complete balance between bounded lattice homomorphisms and
order-preserving continuous maps. We refer to it as the Priestley
duality. Because of the lack of time, we will not address the
details here.



Birkhoff’s duality as a particular case of the Priestley
duality

It is worth pointing out that in the finite case the Priestley
duality yields the Birkhoff duality.

To see this it is sufficient to observe that the Priestley topology
becomes discrete in the finite case. Therefore clopen upsets
become simply upsets.

In addition, in the finite case, as we saw, prime filters are in 1-1
correspondence with join-prime elements and the Birkhoff
duality follows.
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The Stone duality for Boolean lattices

Now suppose that L is a Boolean lattice.

Then it is easy to show
that the poset of prime filters of L is discrete.

Therefore the triple (X (L),⊆, τP) boils down to the pair
(X (L), τP), which is a Stone space.

Conversely, we can view each Stone space (X, τ) as the Priestley
space (X,≤, τ) with the discrete ≤. Then X∗ becomes simply the
lattice of clopen subsets of X, which is clearly a Boolean lattice
because it is closed under set-theoretic complement.
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The Stone duality for Boolean lattices

As a result, we obtain a complete balance between Boolean
lattices and Stone spaces,

which is part of the celebrated Stone
duality, established by Stone back in the 1930ies.

In particular, we obtain the following representation theorem
for Boolean lattices.

Stone’s representation of Boolean lattices: Each Boolean
lattice can be represented as the lattice of clopen subsets of a
Stone space.
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The Esakia duality for Heyting lattices

Let L be a Heyting lattice and let (X (L),⊆, τP) be the Priestley
space of L. Then we have

φ(a→ b) = X (L)− ↓[φ(a)− φ(b)]

Here, for any subset S of a poset P, we denote by ↓S the
downset of S:

↓S = {p ∈ P : ∃ s ∈ S with p 6 s}

The left to right inclusion is relatively easy to see. The right to
left inclusion requires more work. We skip the details.

This allows us to give a nice characterization of dual spaces of
Heyting lattices, which was first done by Esakia in 1974.
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Conversely if (X,≤, τ) is a Priestley space in which for each
clopen U we have ↓U is clopen,

then we can define→ on X∗ by

U → V = X − ↓(U − V)

for each U,V ∈ X∗. Thus X∗ is a Heyting lattice.

This together with the Priestley duality establishes that there is
a complete balance between Heyting lattices and those Priestley
spaces in which the downset of each clopen is clopen.

We call such spaces Esakia spaces.
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which is not Heyting.

Thus L∗ must fail to be an Esakia space.
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Thus there’s a complete balance between Heyting lattices and
Esakia spaces,

which is part of the Esakia duality.

In particular, we obtain the following representation of Heyting
lattices:

Esakia’s representation of Heyting lattices: Each Heyting
lattice can be represented as the lattice of clopen upsets of an
Esakia space.
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