
Lattices and Topology

Guram Bezhanishvili and Mamuka Jibladze

ESSLLI’08
11-15.VIII.2008

Lecture 3: Topology



Review of lecture 2

We have discussed the Birkhoff duality between finite
distributive lattices and finite posets.

Our main tools were join-prime and meet-prime elements.

With each finite distributive lattice L we associated its dual
poset L∗ of join-prime elements.

Conversely, with each finite poset P we associated its dual
lattice P∗ = U (P) of upsets.

We showed that these constructions are mutually inverse in
the sense that L∗∗ is isomorphic to L and that P∗∗ is
order-isomorphic to P, thus obtaining the Birkhoff duality
between finite distributive lattices and finite posets.

We saw that the Birkhoff duality provides a representation
of finite distributive lattices as lattices of sets with
set-theoretic union and intersection.
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We next turned to infinite distributive lattices.

Unfortunately the Birkhoff duality does not extend
straightforwardly to the infinite case because there may be
lack of join-prime elements.

This forced us to generalize the concept of join-prime
element to that of prime filter. Similarly, the concept of
meet-prime element generalizes to that of prime ideal.

We next described a representation of a (possibly infinite)
distributive lattice L as a sublattice of the lattice of all
upsets of the poset X (L) of prime filters of L. This
representation required the Stone lemma.

A precise description of this sublattice can be done by
topological means.



Review of lecture 2

We next turned to infinite distributive lattices.

Unfortunately the Birkhoff duality does not extend
straightforwardly to the infinite case because there may be
lack of join-prime elements.

This forced us to generalize the concept of join-prime
element to that of prime filter. Similarly, the concept of
meet-prime element generalizes to that of prime ideal.

We next described a representation of a (possibly infinite)
distributive lattice L as a sublattice of the lattice of all
upsets of the poset X (L) of prime filters of L. This
representation required the Stone lemma.

A precise description of this sublattice can be done by
topological means.



Review of lecture 2

We next turned to infinite distributive lattices.

Unfortunately the Birkhoff duality does not extend
straightforwardly to the infinite case because there may be
lack of join-prime elements.

This forced us to generalize the concept of join-prime
element to that of prime filter.

Similarly, the concept of
meet-prime element generalizes to that of prime ideal.

We next described a representation of a (possibly infinite)
distributive lattice L as a sublattice of the lattice of all
upsets of the poset X (L) of prime filters of L. This
representation required the Stone lemma.

A precise description of this sublattice can be done by
topological means.



Review of lecture 2

We next turned to infinite distributive lattices.

Unfortunately the Birkhoff duality does not extend
straightforwardly to the infinite case because there may be
lack of join-prime elements.

This forced us to generalize the concept of join-prime
element to that of prime filter. Similarly, the concept of
meet-prime element generalizes to that of prime ideal.

We next described a representation of a (possibly infinite)
distributive lattice L as a sublattice of the lattice of all
upsets of the poset X (L) of prime filters of L. This
representation required the Stone lemma.

A precise description of this sublattice can be done by
topological means.



Review of lecture 2

We next turned to infinite distributive lattices.

Unfortunately the Birkhoff duality does not extend
straightforwardly to the infinite case because there may be
lack of join-prime elements.

This forced us to generalize the concept of join-prime
element to that of prime filter. Similarly, the concept of
meet-prime element generalizes to that of prime ideal.

We next described a representation of a (possibly infinite)
distributive lattice L as a sublattice of the lattice of all
upsets of the poset X (L) of prime filters of L.

This
representation required the Stone lemma.

A precise description of this sublattice can be done by
topological means.



Review of lecture 2

We next turned to infinite distributive lattices.

Unfortunately the Birkhoff duality does not extend
straightforwardly to the infinite case because there may be
lack of join-prime elements.

This forced us to generalize the concept of join-prime
element to that of prime filter. Similarly, the concept of
meet-prime element generalizes to that of prime ideal.

We next described a representation of a (possibly infinite)
distributive lattice L as a sublattice of the lattice of all
upsets of the poset X (L) of prime filters of L. This
representation required the Stone lemma.

A precise description of this sublattice can be done by
topological means.



Review of lecture 2

We next turned to infinite distributive lattices.

Unfortunately the Birkhoff duality does not extend
straightforwardly to the infinite case because there may be
lack of join-prime elements.

This forced us to generalize the concept of join-prime
element to that of prime filter. Similarly, the concept of
meet-prime element generalizes to that of prime ideal.

We next described a representation of a (possibly infinite)
distributive lattice L as a sublattice of the lattice of all
upsets of the poset X (L) of prime filters of L. This
representation required the Stone lemma.

A precise description of this sublattice can be done by
topological means.



Short outline of lecture 3

Lecture 3: Topology

Topological spaces

Closure and interior

Separation axioms

Compactness

Compact Hausdorff spaces

Stone spaces



Short outline of lecture 3

Lecture 3: Topology

Topological spaces

Closure and interior

Separation axioms

Compactness

Compact Hausdorff spaces

Stone spaces



Short outline of lecture 3

Lecture 3: Topology

Topological spaces

Closure and interior

Separation axioms

Compactness

Compact Hausdorff spaces

Stone spaces



Short outline of lecture 3

Lecture 3: Topology

Topological spaces

Closure and interior

Separation axioms

Compactness

Compact Hausdorff spaces

Stone spaces



Short outline of lecture 3

Lecture 3: Topology

Topological spaces

Closure and interior

Separation axioms

Compactness

Compact Hausdorff spaces

Stone spaces



Short outline of lecture 3

Lecture 3: Topology

Topological spaces

Closure and interior

Separation axioms

Compactness

Compact Hausdorff spaces

Stone spaces



Short outline of lecture 3

Lecture 3: Topology

Topological spaces

Closure and interior

Separation axioms

Compactness

Compact Hausdorff spaces

Stone spaces



Topology

The origins of topology go back to Georg Cantor (1845 – 1918)
and his fundamental work concerning the nature of infinity.

The definition of a topological space that we use today was first
given by Felix Hausdorff (1868 - 1942) in 1914.

Yet another definition which we will encounter in this lecture
was given by Kazimierz Kuratowski (1896 – 1980) in 1922.

As shown by McKinsey and Tarski in 1944, it opens the door to
connect topology with modal logic.
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Topology

Hausdorff’s Definition: A topological space is a pair (X, τ),
where X is a set and τ is a collection of subsets of X—called
open sets—containing ∅, X and closed under finite intersections
and arbitrary unions.

More precisely, τ is a topology on X if
1 ∅,X ∈ τ .
2 U,V ∈ τ ⇒ U ∩ V ∈ τ .
3 S ⊆ τ ⇒

⋃
S ∈ τ .

As an immediate consequence of the definition we see that
topologies provide a new set of examples of distributive lattices.
In fact τ is a sublattice of P(X).

Let X be a topological space. The complement of an open set of
X is called a closed set. Let δ denote the collection of closed sets
of X. Thus, we have δ = {X − U : U ∈ τ}.
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Topology

We immediately obtain:

1 ∅,X ∈ δ.
2 F,G ∈ δ ⇒ F ∪ G ∈ δ.
3 S ⊆ δ ⇒

⋂
S ∈ δ.

Similarly to τ , we have that δ is also a sublattice of P(X).

Examples:
(1) Let X be a nonempty set. We set τ = P(X). Then (X, τ) is a
topological space in which every set is open. Such spaces are
called discrete spaces.

(2) Now set τ = {∅,X}. Then τ is a topology on X, called the
trivial topology.

(3) Let (P,6) be a poset. We set τ6 = U (P). Then (P, τ6) is a
topological space in which the intersection of any collection of
opens is again open. Spaces with this property are called
Alexandroff spaces.
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Topology

(4) In particular, the “smallest” example of a non-discrete
nontrivial topology is given by the Sierpiński space

. This is the
Alexandroff space corresponding to the two-element poset
{0 6 1}. Thus {0} is a closed set which is not open and {1} is
an open set which is not closed.

This space is important enough that it is worth drawing a
picture of it.

the open non-closed point // ◦ 1

the closed non-open point // • 0

(5) Consider the real line R. We call U ⊆ R open if for each
x ∈ U there exists ε > 0 such that (x − ε, x + ε) ⊆ U. Then R
becomes a topological space.
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This space is important enough that it is worth drawing a
picture of it.
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Interior and closure

Let X be a topological space and let x ∈ X.

We call open sets
containing x open neighborhoods of x.

For A ⊆ X, we say that x belongs to the interior of A if there
exists an open neighborhood U of x contained in A. Let int(A)
denote the interior of A.

We also say that x belongs to the closure of A if each open
neighborhood U of x has nonempty intersection with A. Let A
denote the closure of A.

It is easy to verify that the interior and closure satisfy the
following conditions:

int(X) = X,

int(A) ⊆ A,

int(A) ⊆ int(int(A)),
int(A ∩ B) = int(A) ∩ int(B).



Interior and closure

Let X be a topological space and let x ∈ X. We call open sets
containing x open neighborhoods of x.

For A ⊆ X, we say that x belongs to the interior of A if there
exists an open neighborhood U of x contained in A. Let int(A)
denote the interior of A.

We also say that x belongs to the closure of A if each open
neighborhood U of x has nonempty intersection with A. Let A
denote the closure of A.

It is easy to verify that the interior and closure satisfy the
following conditions:

int(X) = X,

int(A) ⊆ A,

int(A) ⊆ int(int(A)),
int(A ∩ B) = int(A) ∩ int(B).



Interior and closure

Let X be a topological space and let x ∈ X. We call open sets
containing x open neighborhoods of x.

For A ⊆ X, we say that x belongs to the interior of A if there
exists an open neighborhood U of x contained in A.

Let int(A)
denote the interior of A.

We also say that x belongs to the closure of A if each open
neighborhood U of x has nonempty intersection with A. Let A
denote the closure of A.

It is easy to verify that the interior and closure satisfy the
following conditions:

int(X) = X,

int(A) ⊆ A,

int(A) ⊆ int(int(A)),
int(A ∩ B) = int(A) ∩ int(B).



Interior and closure

Let X be a topological space and let x ∈ X. We call open sets
containing x open neighborhoods of x.

For A ⊆ X, we say that x belongs to the interior of A if there
exists an open neighborhood U of x contained in A. Let int(A)
denote the interior of A.

We also say that x belongs to the closure of A if each open
neighborhood U of x has nonempty intersection with A. Let A
denote the closure of A.

It is easy to verify that the interior and closure satisfy the
following conditions:

int(X) = X,

int(A) ⊆ A,

int(A) ⊆ int(int(A)),
int(A ∩ B) = int(A) ∩ int(B).



Interior and closure

Let X be a topological space and let x ∈ X. We call open sets
containing x open neighborhoods of x.

For A ⊆ X, we say that x belongs to the interior of A if there
exists an open neighborhood U of x contained in A. Let int(A)
denote the interior of A.

We also say that x belongs to the closure of A if each open
neighborhood U of x has nonempty intersection with A.

Let A
denote the closure of A.

It is easy to verify that the interior and closure satisfy the
following conditions:

int(X) = X,

int(A) ⊆ A,

int(A) ⊆ int(int(A)),
int(A ∩ B) = int(A) ∩ int(B).



Interior and closure

Let X be a topological space and let x ∈ X. We call open sets
containing x open neighborhoods of x.

For A ⊆ X, we say that x belongs to the interior of A if there
exists an open neighborhood U of x contained in A. Let int(A)
denote the interior of A.

We also say that x belongs to the closure of A if each open
neighborhood U of x has nonempty intersection with A. Let A
denote the closure of A.

It is easy to verify that the interior and closure satisfy the
following conditions:

int(X) = X,

int(A) ⊆ A,

int(A) ⊆ int(int(A)),
int(A ∩ B) = int(A) ∩ int(B).



Interior and closure

Let X be a topological space and let x ∈ X. We call open sets
containing x open neighborhoods of x.

For A ⊆ X, we say that x belongs to the interior of A if there
exists an open neighborhood U of x contained in A. Let int(A)
denote the interior of A.

We also say that x belongs to the closure of A if each open
neighborhood U of x has nonempty intersection with A. Let A
denote the closure of A.

It is easy to verify that the interior and closure satisfy the
following conditions:

int(X) = X,

int(A) ⊆ A,

int(A) ⊆ int(int(A)),
int(A ∩ B) = int(A) ∩ int(B).



Interior and closure

Let X be a topological space and let x ∈ X. We call open sets
containing x open neighborhoods of x.

For A ⊆ X, we say that x belongs to the interior of A if there
exists an open neighborhood U of x contained in A. Let int(A)
denote the interior of A.

We also say that x belongs to the closure of A if each open
neighborhood U of x has nonempty intersection with A. Let A
denote the closure of A.

It is easy to verify that the interior and closure satisfy the
following conditions:

int(X) = X

,

int(A) ⊆ A,

int(A) ⊆ int(int(A)),
int(A ∩ B) = int(A) ∩ int(B).



Interior and closure

Let X be a topological space and let x ∈ X. We call open sets
containing x open neighborhoods of x.

For A ⊆ X, we say that x belongs to the interior of A if there
exists an open neighborhood U of x contained in A. Let int(A)
denote the interior of A.

We also say that x belongs to the closure of A if each open
neighborhood U of x has nonempty intersection with A. Let A
denote the closure of A.

It is easy to verify that the interior and closure satisfy the
following conditions:

int(X) = X,

int(A) ⊆ A

,

int(A) ⊆ int(int(A)),
int(A ∩ B) = int(A) ∩ int(B).



Interior and closure

Let X be a topological space and let x ∈ X. We call open sets
containing x open neighborhoods of x.

For A ⊆ X, we say that x belongs to the interior of A if there
exists an open neighborhood U of x contained in A. Let int(A)
denote the interior of A.

We also say that x belongs to the closure of A if each open
neighborhood U of x has nonempty intersection with A. Let A
denote the closure of A.

It is easy to verify that the interior and closure satisfy the
following conditions:

int(X) = X,

int(A) ⊆ A,

int(A) ⊆ int(int(A))

,

int(A ∩ B) = int(A) ∩ int(B).



Interior and closure

Let X be a topological space and let x ∈ X. We call open sets
containing x open neighborhoods of x.

For A ⊆ X, we say that x belongs to the interior of A if there
exists an open neighborhood U of x contained in A. Let int(A)
denote the interior of A.

We also say that x belongs to the closure of A if each open
neighborhood U of x has nonempty intersection with A. Let A
denote the closure of A.

It is easy to verify that the interior and closure satisfy the
following conditions:

int(X) = X,

int(A) ⊆ A,

int(A) ⊆ int(int(A)),
int(A ∩ B) = int(A) ∩ int(B).



Interior and closure

∅ = ∅

,

A ⊆ A,

A ⊆ A,

A ∪ B = A ∪ B.

The closure and interior operators are dual to each other:

int(A) = X − X − A and A = X − int(X − A).

In fact, as was shown by Kuratowski, topological spaces can be
defined in terms of closure (interior) operators satisfying the
above four conditions.

Indeed, let : P(X)→P(X) be a function satisfying the above
four conditions. Call A ⊆ X a closed subset of X if A = A. Then
τ = {X − A : A is closed} is a topology on X, and every topology
on X arises this way! The same, of course, is true if we work
with int : P(X)→P(X) instead.
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Subspaces

Let (X, τ) be a topological space and Y be a subset of X.

There is a natural way to equip Y with a topology “coming from
X”, called the subspace topology.

Open sets of the subspace topology on Y are of the form Y ∩ U
for U ∈ τ .

Examples:

(1) The subspace topology of any finite subset of the real line R
is discrete.

(2) On the other hand, the subspace topology of Q ⊂ R is by no
means discrete.

(3) Neither is the subspace topology of the interval (0,1) ⊂ R.
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Continuous maps
Given two topological spaces (X, τ) and (X ′, τ ′), a map
f : X → X ′ is called continuous if the inverse image f−1(U) of
any open subset U of X ′ is open in X.

Examples:
(1) If X is a discrete space and Y is any space, then any map
f : X → Y is continuous.

(2) Each polynomial f(x) = a0 + a1x + a2x2 + ...+ anxn is a
continuous map from the real line R to itself.

(3) For partial orders (P,6) and (P′,6′), a map f : P→ P′ is
continuous between the corresponding Alexandroff spaces iff f
is order-preserving.

(4) The following map is not continuous. Let X be any set
containing more than one element. Let τ be the discrete
topology and η be the trivial topology on X. Then the identity
map from (X, η) to (X, τ) is not continuous because the inverse
image of any singleton subset of (X, τ) is not open in (X, η).
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(2) Each polynomial f(x) = a0 + a1x + a2x2 + ...+ anxn is a
continuous map from the real line R to itself.

(3) For partial orders (P,6) and (P′,6′), a map f : P→ P′ is
continuous between the corresponding Alexandroff spaces iff f
is order-preserving.

(4) The following map is not continuous. Let X be any set
containing more than one element. Let τ be the discrete
topology and η be the trivial topology on X. Then the identity
map from (X, η) to (X, τ) is not continuous

because the inverse
image of any singleton subset of (X, τ) is not open in (X, η).
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Homeomorphism

A homeomorphism is a continuous bijection whose inverse is
also continuous.

Two spaces are called homeomorphic if there exists a
homeomorphism between them.

Examples:
(1) The identity map from a space (X, τ) to itself is a
homeomorphism.

(2) A map between Alexandroff spaces is a homeomorphism iff
it is an order-isomorphism between the corresponding partial
orders.

(3) The real line R is homeomorphic to its subspace
(−1,1) ⊆ R. One possible homeomorphism f : (−1,1)→ R is
given by

f(t) =
t

1− t2 .
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Let X be a topological space.

We call X T0 if for each pair x, y of distinct points of X, there
exists an open set U of X containing exactly one of x, y.
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We call X T1 if for each pair x, y of distinct points of X, there
exists an open set U of X such that x ∈ U and y /∈ U.
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Separation properties

We call X T2 or Hausdorff if for each pair x, y of distinct points
of X, there exist disjoint open sets U,V of X such that x ∈ U and
y ∈ V.
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Separation properties

Clearly each T2-space is T1, and each T1-space is T0.

The Sierpiński space is an example of a T0-space which is not T1.

Let S be an infinite set. Then the cofinite sets of S together with
the empty set form a topology on S we call the cofinite topology.
The set S with the cofinite topology is an example of a T1-space
which is not T2.

If a set S has more than one element, then the trivial topology
on S is not T0. All the other spaces we have considered so far
are T0.

Any finite Hausdorff space (in fact, any finite T1-space) is
discrete.

An example of a non-discrete Hausdorff space is the real line R.



Separation properties

Clearly each T2-space is T1, and each T1-space is T0.
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Sober spaces

Let X be a topological space.

Clearly the closures of singletons
{x} are join-prime elements of the lattice of closed subsets of X.

We call X sober if each join-prime element of the lattice of
closed sets has the form {x} for a unique point x.

The uniqueness requirement means that sober spaces are T0. On
the other hand, not all T0 spaces are sober. For example, the
cofinite topology on an infinite set is T1 but not sober.
Nevertheless, one can show that each Hausdorff space is sober.

An important property of sober spaces is that one can recover
points of such a space from knowing only its lattice of closed
sets.
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Specialization order

Let X be a T0-space. We define the specialization order 6τ of X
by

x 6τ y iff x ∈ {y}

Equivalently x 6τ y iff x ∈ U implies y ∈ U for each open set U.

It is easy to see that 6τ is reflexive and transitive. Moreover 6τ

is antisymmetric because X is T0.

Note that if X is T1, then the specialization order is trivial.



Specialization order

Let X be a T0-space. We define the specialization order 6τ of X
by

x 6τ y iff x ∈ {y}

Equivalently x 6τ y iff x ∈ U implies y ∈ U for each open set U.

It is easy to see that 6τ is reflexive and transitive. Moreover 6τ

is antisymmetric because X is T0.

Note that if X is T1, then the specialization order is trivial.



Specialization order

Let X be a T0-space. We define the specialization order 6τ of X
by

x 6τ y iff x ∈ {y}

Equivalently x 6τ y iff x ∈ U implies y ∈ U for each open set U.

It is easy to see that 6τ is reflexive and transitive.

Moreover 6τ

is antisymmetric because X is T0.

Note that if X is T1, then the specialization order is trivial.



Specialization order

Let X be a T0-space. We define the specialization order 6τ of X
by

x 6τ y iff x ∈ {y}

Equivalently x 6τ y iff x ∈ U implies y ∈ U for each open set U.

It is easy to see that 6τ is reflexive and transitive. Moreover 6τ

is antisymmetric because X is T0.

Note that if X is T1, then the specialization order is trivial.



Specialization order

Let X be a T0-space. We define the specialization order 6τ of X
by

x 6τ y iff x ∈ {y}

Equivalently x 6τ y iff x ∈ U implies y ∈ U for each open set U.

It is easy to see that 6τ is reflexive and transitive. Moreover 6τ

is antisymmetric because X is T0.

Note that if X is T1, then the specialization order is trivial.



Specialization order

Thus each T0-topology τ on a set X gives rise to the partial order
6τ on X.

Conversely, as we already saw, each partial order 6 on
X gives rise to the Alexandroff topology τ6 on X.

Therefore we obtain the following correspondences:

τ 7→ 6τ 7→ τ6τ

and
6 7→ τ6 7→ 6τ6 .

It turns out that for any partial order 6 we have 6τ6=6.

On the other hand τ6τ = τ iff τ is an Alexandroff topology.
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Specialization order

This establishes complete balance between partial orders and
Alexandroff T0-spaces.

In particular, since every finite space is automatically
Alexandroff, we obtain complete balance between finite
T0-spaces and finite posets.

On the other hand, there are plenty of infinite non-Alexandroff
spaces.

In particular, R and Q are such examples. More generally, each
non-discrete (infinite) T1-space is not Alexandroff.
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Compactness

We will need one more fundamental concept in topology, that of
compactness.

A topological space X is called compact if for each family U of
open subsets of X with X =

⋃
U , there exists a finite subfamily

U0 ⊆ U such that X =
⋃

U0. In other words, X is compact if
any open cover of X has a finite subcover.

Similarly, we call a subset C of X compact if for each family U
of open subsets of X with C ⊆

⋃
U , there exists a finite

subfamily U0 ⊆ U such that C ⊆
⋃

U0. In other words, C is
compact if any open cover of C has a finite subcover.
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Lemma: A closed subset of a compact space is compact.

Proof: Let C be closed and {Ui : i ∈ I} be an open cover of C.
Then X = (X − C) ∪

⋃
i∈I Ui. Since X is compact, there is a finite

cover X − C,U1, . . . ,Un of X. Then U1, . . . ,Un is a finite cover of
C. Therefore C is compact.

Lemma: If X is compact and f : X → Y is a continuous map,
then f(X) is compact in Y.

Proof: Let {Ui : i ∈ I} be an open cover of f(X). Since f is
continuous, {f−1(Ui) : i ∈ I} is an open cover of X. As X is
compact, there is a finite cover f−1(U1), . . . , f−1(Un) of X. But
then U1, . . . ,Un is a finite cover of f(X). Therefore f(X) is
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An especially important subclass of the class of topological
spaces is that of compact Hausdorff spaces.
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(1) Each finite discrete space is a compact Hausdorff space.

(2) The interval [0,1] is a compact Hausdorff space.

(3) The real line R is Hausdorff, but it is not compact. Therefore
R is not compact Hausdorff.

Compact Hausdorff spaces have many pleasant properties. We
only mention two because they will be useful for our
considerations.
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Compact Hausdorff spaces

We saw that any closed subset of a compact space is compact.

It
turns out that the converse—which is not true in general—is
true for compact Hausdorff spaces.

Theorem: A subset of a compact Hausdorff space is compact iff
it is closed.

Proof: It is sufficient to show that if C ⊆ X is compact, then
X − C is open. Let x ∈ X − C. Since X is Hausdorff, for each c ∈ C
there exist disjoint open sets Uc and Vc such that x ∈ Uc and
c ∈ Vc. The sets Vc cover C. Since C is compact, there exists a
finite cover Vc1 , . . . ,Vcn . Therefore x ∈ Uc1 ∩ · · · ∩ Ucn is an open
set disjoint from C. Thus X − C is open.
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Theorem: A continuous 1-1 onto map between compact
Hausdorff spaces is a homeomorphism.

Proof: Let X,Y be compact Hausdorff and f : X → Y be 1-1 onto
continuous. The map f has an inverse g : Y → X; let us show
that g is continuous. For this it is sufficient to show that for a
closed subset F of X, g−1(F) = f(F) is closed. Since X is compact,
F is compact. Therefore f(F) is compact in Y. But Y is compact
Hausdorff. Thus f(F) is closed in Y. Consequently g is
continuous, and so f is a homeomorphism.
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Stone spaces

An important subclass of the class of compact Hausdorff spaces
is that of Stone spaces which will play a prominent role in our
considerations.

To single it out from the compact Hausdorff spaces, we recall
that a subset of a topological space is clopen if it is both closed
and open.

Let X be a topological space. If the topology on X is generated
by clopen subsets of X, then X is called zero-dimensional.

We call a compact Hausdorff space a Stone space if it is
zero-dimensional.
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Stone spaces — examples

Examples:
(1) Each finite discrete space is a Stone space.

(2) Consider the following subspace of R:

X = {1, 1
2
,
1
3
,
1
4
, ...,0}

·····································································································

It is easy to see that in X all singletons are clopen except {0}.
Moreover a subset of X containing 0 is clopen iff it is cofinite in
X.
Hence any open subset of X is a union of clopen subsets of X, so
X is a Stone space.

X is a countably infinite Stone space. Now we give an example
of an uncountable Stone space.
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Stone spaces

(3) The Cantor set C is the closed subspace of the interval [0,1]
defined as the complement of a certain union of open intervals:

Formally, C is

[0,1]−
(

(
1
3
,
2
3
) ∪ (

1
9
,
2
9
) ∪ (

7
9
,
8
9
)

∪(
1

27
,

2
27

) ∪ (
7
27
,

8
27

) ∪ (
19
27
,
20
27

) ∪ (
25
27
,
26
27

) ∪ · · ·
)
,

or, more precisely, C = [0,1]−
∞⋃

n=1

Un,

where U1 = (1
3 ,

2
3) and Un+1 = 1

3Un ∪ (1− 1
3Un).
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Stone spaces

There are many other examples of infinite Stone spaces.

As we
will see in Lecture 4, there is a complete balance between Stone
spaces and Boolean lattices.

(4) The interval [0,1] is a typical example of a compact
Hausdorff space which is not a Stone space.
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