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Lecture 2: Representation of distributive lattices



Review of the first lecture

We have defined posets (partially ordered sets—sets
equipped with a reflexive, antisymmetric, transitive binary
relation);

We have defined lattices as posets whose all nonempty
finite subsets possess meet (glb, greatest lower bound) and
join (lub, least upper bound);

We have defined bounded lattices as lattices having the
largest and least elements;

We have defined complete lattices as posets whose all
subsets possess glb and lub;

We have shown that lattices can be equivalently defined as
sets equipped with two binary operations ∧ and ∨ which
are idempotent, commutative, associative, and satisfy the
absorption laws;
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We have defined distributive lattices and described the
Birkhoff characterization asserting that a lattice is
distributive iff it does not have any sublattices isomorphic
to the pentagon or the diamond;

We have defined Boolean lattices as those distributive
lattices all of whose elements have the complement;

Finally, we have defined Heyting lattices as those
distributive lattices possessing the implication for each pair
of their elements.
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Birkhoff’s duality between finite distributive lattices and
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Prime filters and prime ideals

Representation of distributive lattices



Short outline of the second lecture

Lecture 2: Representation of distributive lattices

Join-prime and meet-prime elements

Birkhoff’s duality between finite distributive lattices and
finite posets

Prime filters and prime ideals

Representation of distributive lattices



Short outline of the second lecture

Lecture 2: Representation of distributive lattices

Join-prime and meet-prime elements

Birkhoff’s duality between finite distributive lattices and
finite posets

Prime filters and prime ideals

Representation of distributive lattices



Short outline of the second lecture

Lecture 2: Representation of distributive lattices

Join-prime and meet-prime elements

Birkhoff’s duality between finite distributive lattices and
finite posets

Prime filters and prime ideals

Representation of distributive lattices



Short outline of the second lecture

Lecture 2: Representation of distributive lattices

Join-prime and meet-prime elements

Birkhoff’s duality between finite distributive lattices and
finite posets

Prime filters and prime ideals

Representation of distributive lattices



Prime elements

From now on we will mainly concentrate on distributive lattices

and develop representation theorems for them.

Our first task is to develop representation of finite distributive
lattices. This was first done by Garrett Birkhoff in the 1930ies.

Our main tool will be the join-prime elements of the lattice.

Let L be a lattice. We call an element j 6= 0 of L join-prime if
j 6 a ∨ b implies j 6 a or j 6 b for all a, b ∈ L. Let J(L) denote
the set of join-prime elements of L.

Dually, we call an element m 6= 1 of L meet-prime if a ∧ b 6 m
implies a 6 m or b 6 m for all a, b ∈ L. Let M(L) denote the set
of meet-prime elements of L.
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Examples

In the lattice U (P) of upsets of a poset P, the upsets

↑p := {x ∈ P : x > p}.

are join-prime elements for any p ∈ P.

Similarly, in the lattice D(P) of downsets of P, the downsets

↓p = {x ∈ P : x 6 p}

are join-prime for all p ∈ P.
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Duality between finite distributive lattices and finite
posets

The key fact for establishing duality between finite distributive
lattices and finite posets is the following

Theorem: If L is a finite distributive lattice, then each element
a 6= 0 of L is the join of the join-prime elements of L underneath
a; that is,

a =
∨
{j ∈ J(L) : j 6 a}.

Proof: It is sufficient to show that if a 66 b, then there exists
j ∈ J(L) such that j 6 a and j 66 b. If a is join-prime, then we are
done. If not, then there exist c, d ∈ L such that c ∨ d = a. Since
a 66 b, one of c, d is not underneath b. Suppose that c 66 b. If c is
join-prime, then we are done. If not, then the process will
continue. Since L is finite, the process will have to terminate.
The stage where it terminates produces a join-prime element j
of L such that j 6 a and j 66 b.
Remark: Note that all we used in the proof is that there are no
infinite descending chains in L.
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Duality between finite distributive lattices and finite
posets

Now with each finite distributive lattice L we associate its dual
poset L∗ = (J(L),>) of join-prime elements of L.

Conversely, with each finite poset (P,6) we associate the
distributive lattice P∗ = U (P) of upsets of P.

So we have
L 7→ L∗ 7→ L∗∗

and
P 7→ P∗ 7→ P∗∗
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Duality between finite distributive lattices and finite
posets

Theorem: L is isomorphic to L∗∗.

Proof (Sketch). Define φ : L→ L∗∗ by φ(a) = {j ∈ J(L) : j 6 a}.
It follows from transitivity of > that {j ∈ J(L) : j 6 a} is an upset
of L∗, thus φ is well-defined.

φ(a ∧ b) = φ(a) ∩ φ(b) by definition of meets;

φ(a ∨ b) = φ(a) ∪ φ(b) by definition of prime elements;

thus φ is a lattice homomorphism.

To see that φ is onto, let U be an upset of L∗. Let a =
∨

U. It is
easy to see that U ⊆ φ(a). Moreover it follows from the defining
property of prime elements that φ(a) ⊆ U. Therefore φ(a) = U,
and so φ is onto.

That φ is 1-1 follows from a =
∨
{j ∈ J(L) : j 6 a} for each a ∈ L.

Thus φ is a lattice isomorphism.
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Duality between finite distributive lattices and finite
posets

Theorem: P is isomorphic to P∗∗.

Proof (Sketch). Define ψ : P→ P∗∗ by ψ(p) = ↑p. As we saw, ↑p
is join-prime in U (P). Thus, ψ is well-defined. Moreover ψ is
clearly 1-1. Next, since P is finite, every join-prime element of
U (P) has the form ↑p for some p ∈ P, which means that ψ is
onto. To show that ψ is an order-isomorphism, it remains to
observe the following easy

Fact: For each p, q ∈ P, the following three conditions are
equivalent:

p 6 q.

↑q ⊆ ↑p.

↓p ⊆ ↓q.

These theorems put together give us the Birkhoff duality
between finite distributive lattices and finite posets.



Duality between finite distributive lattices and finite
posets

Theorem: P is isomorphic to P∗∗.

Proof (Sketch). Define ψ : P→ P∗∗ by ψ(p) = ↑p.

As we saw, ↑p
is join-prime in U (P). Thus, ψ is well-defined. Moreover ψ is
clearly 1-1. Next, since P is finite, every join-prime element of
U (P) has the form ↑p for some p ∈ P, which means that ψ is
onto. To show that ψ is an order-isomorphism, it remains to
observe the following easy

Fact: For each p, q ∈ P, the following three conditions are
equivalent:

p 6 q.

↑q ⊆ ↑p.

↓p ⊆ ↓q.

These theorems put together give us the Birkhoff duality
between finite distributive lattices and finite posets.



Duality between finite distributive lattices and finite
posets

Theorem: P is isomorphic to P∗∗.

Proof (Sketch). Define ψ : P→ P∗∗ by ψ(p) = ↑p. As we saw, ↑p
is join-prime in U (P). Thus, ψ is well-defined.

Moreover ψ is
clearly 1-1. Next, since P is finite, every join-prime element of
U (P) has the form ↑p for some p ∈ P, which means that ψ is
onto. To show that ψ is an order-isomorphism, it remains to
observe the following easy

Fact: For each p, q ∈ P, the following three conditions are
equivalent:

p 6 q.

↑q ⊆ ↑p.

↓p ⊆ ↓q.

These theorems put together give us the Birkhoff duality
between finite distributive lattices and finite posets.



Duality between finite distributive lattices and finite
posets

Theorem: P is isomorphic to P∗∗.

Proof (Sketch). Define ψ : P→ P∗∗ by ψ(p) = ↑p. As we saw, ↑p
is join-prime in U (P). Thus, ψ is well-defined. Moreover ψ is
clearly 1-1.

Next, since P is finite, every join-prime element of
U (P) has the form ↑p for some p ∈ P, which means that ψ is
onto. To show that ψ is an order-isomorphism, it remains to
observe the following easy

Fact: For each p, q ∈ P, the following three conditions are
equivalent:

p 6 q.

↑q ⊆ ↑p.

↓p ⊆ ↓q.

These theorems put together give us the Birkhoff duality
between finite distributive lattices and finite posets.



Duality between finite distributive lattices and finite
posets

Theorem: P is isomorphic to P∗∗.

Proof (Sketch). Define ψ : P→ P∗∗ by ψ(p) = ↑p. As we saw, ↑p
is join-prime in U (P). Thus, ψ is well-defined. Moreover ψ is
clearly 1-1. Next, since P is finite, every join-prime element of
U (P) has the form ↑p for some p ∈ P

, which means that ψ is
onto. To show that ψ is an order-isomorphism, it remains to
observe the following easy

Fact: For each p, q ∈ P, the following three conditions are
equivalent:

p 6 q.

↑q ⊆ ↑p.

↓p ⊆ ↓q.

These theorems put together give us the Birkhoff duality
between finite distributive lattices and finite posets.



Duality between finite distributive lattices and finite
posets

Theorem: P is isomorphic to P∗∗.

Proof (Sketch). Define ψ : P→ P∗∗ by ψ(p) = ↑p. As we saw, ↑p
is join-prime in U (P). Thus, ψ is well-defined. Moreover ψ is
clearly 1-1. Next, since P is finite, every join-prime element of
U (P) has the form ↑p for some p ∈ P, which means that ψ is
onto.

To show that ψ is an order-isomorphism, it remains to
observe the following easy

Fact: For each p, q ∈ P, the following three conditions are
equivalent:

p 6 q.

↑q ⊆ ↑p.

↓p ⊆ ↓q.

These theorems put together give us the Birkhoff duality
between finite distributive lattices and finite posets.



Duality between finite distributive lattices and finite
posets

Theorem: P is isomorphic to P∗∗.

Proof (Sketch). Define ψ : P→ P∗∗ by ψ(p) = ↑p. As we saw, ↑p
is join-prime in U (P). Thus, ψ is well-defined. Moreover ψ is
clearly 1-1. Next, since P is finite, every join-prime element of
U (P) has the form ↑p for some p ∈ P, which means that ψ is
onto. To show that ψ is an order-isomorphism, it remains to
observe the following easy

Fact: For each p, q ∈ P, the following three conditions are
equivalent:

p 6 q.

↑q ⊆ ↑p.

↓p ⊆ ↓q.

These theorems put together give us the Birkhoff duality
between finite distributive lattices and finite posets.



Duality between finite distributive lattices and finite
posets

Theorem: P is isomorphic to P∗∗.

Proof (Sketch). Define ψ : P→ P∗∗ by ψ(p) = ↑p. As we saw, ↑p
is join-prime in U (P). Thus, ψ is well-defined. Moreover ψ is
clearly 1-1. Next, since P is finite, every join-prime element of
U (P) has the form ↑p for some p ∈ P, which means that ψ is
onto. To show that ψ is an order-isomorphism, it remains to
observe the following easy

Fact: For each p, q ∈ P, the following three conditions are
equivalent:

p 6 q.

↑q ⊆ ↑p.

↓p ⊆ ↓q.

These theorems put together give us the Birkhoff duality
between finite distributive lattices and finite posets.



Duality between finite distributive lattices and finite
posets

Theorem: P is isomorphic to P∗∗.

Proof (Sketch). Define ψ : P→ P∗∗ by ψ(p) = ↑p. As we saw, ↑p
is join-prime in U (P). Thus, ψ is well-defined. Moreover ψ is
clearly 1-1. Next, since P is finite, every join-prime element of
U (P) has the form ↑p for some p ∈ P, which means that ψ is
onto. To show that ψ is an order-isomorphism, it remains to
observe the following easy

Fact: For each p, q ∈ P, the following three conditions are
equivalent:

p 6 q.

↑q ⊆ ↑p.

↓p ⊆ ↓q.

These theorems put together give us the Birkhoff duality
between finite distributive lattices and finite posets.



Example

We will demonstrate the Birkhoff duality on the example given
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Duality between finite distributive lattices and finite
posets

Note that instead of working with J(L) and U (P), we could
alternatively work with M(L) and D(P). The result would be the
same!

One of the consequences of the Birkhoff duality is the following
representation theorem for finite distributive lattices:

Representation Theorem for Finite Distributive Lattices:
Every finite distributive lattice can be represented as the lattice
of upsets (downsets) of some poset.

It is our goal to extend the Birkhoff duality to all distributive
lattices.
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The infinite case

So far we have dealt only with finite distributive lattices.

The
next natural question is whether the Brikhoff duality can be
extended to infinite objects.

It would be nice if the Birkhoff duality had a straightforward
generalization to the infinite case. Unfortunately, this is not the
case. Why? Because we may not have enough prime elements
any longer. In fact, there are infinite lattices with no prime
elements whatsoever!

Example: Consider the lattice of cofinite subsets of a given
infinite set S. Each cofinite subset A of S decomposes into a join
of two strictly smaller cofinite subsets. For example, take any
two x, y ∈ A. Then

A = (A− {x}) ∪ (A− {y}).

Thus this lattice does not have any join-prime elements.
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Filters and ideals

What shall we do?

At this point we need to introduce a new
concept of prime filter and its dual concept of prime ideal.

As we will see, in the finite case prime filters are in 1-1
correspondence with join-prime elements and prime ideals are
in 1-1 correspondence with meet-prime elements. Luckily for
us, they will turn out to be the right generalization of prime
elements when we move to the infinite case.

To introduce prime filters and prime ideals, we first need to give
a brief account of filters and ideals of a lattice.
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The infinite case

Let L be a lattice. A nonempty subset F of L is called a filter of L
if the following two conditions are satisfied:

1 From a ∈ F and a 6 b it follows that b ∈ F.
2 If a, b ∈ F, then a ∧ b ∈ F.

Equivalently, F 6= ∅ is a filter of L if for each a, b ∈ L we have
a, b ∈ F iff a ∧ b ∈ F.

The dual notion of a filter is that of an ideal.

A nonempty subset I of L is called an ideal of L if:
1 From a ∈ I and b 6 a it follows that b ∈ I.
2 If a, b ∈ I, then a ∨ b ∈ I.

Equivalently, I 6= ∅ is an ideal of L if for each a, b ∈ L we have
a, b ∈ I iff a ∨ b ∈ I.
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Filters and ideals

Example: For a ∈ L, the upset ↑a is a filter and the downset ↓a is
an ideal of L, called the principal filter and ideal of L,
respectively.

In a finite lattice, the converse is also true; that is, every filter
(ideal) is principal.

But there are infinite lattices, where not every filter (ideal) is
principal.

Example: In [0,1] we have (1
2 ,1] is a non-principal filter and

[0, 1
2) is a non-principal ideal.
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Prime filters and prime ideals

Let L be a lattice and F 6= L be a filter of L. We call F a prime
filter of L if for all a, b ∈ L we have:

a ∨ b ∈ F ⇒ a ∈ F or b ∈ F.

Let X (L) denote the set of prime filters of L.

Dually, we call an ideal I 6= L of L a prime ideal of L if for all
a, b ∈ L we have:

a ∧ b ∈ I ⇒ a ∈ I or b ∈ I.

Let Y (L) denote the set of prime ideals of L.

Thus, a filter F is prime iff its complement I = L− F is an ideal,
which is then a prime ideal.

Similarly, an ideal I is prime iff its complement F = L− I is a
filter, which is then a prime filter.
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Prime filters and prime ideals

Examples:
(1) In a linear order, every upset is a prime filter, and every
downset is a prime ideal.

(2) Let a ∈ L. Then a is join-prime iff the principal filter ↑a is a
prime filter, and a is meet-prime iff the principal ideal ↓a is a
prime ideal.

Now we consider the map J(L)→X (L) given by a 7→ ↑a.

Dually, we consider the map M(L)→ Y (L) given by a 7→ ↓a.
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Prime filters and prime ideals

Since every filter of a finite lattice L is principal, from the above
we obtain:

Theorem: In a finite lattice the map a 7→ ↑a establishes
order-isomorphism between the posets (J(L),>) and (X (L),⊆).

Similarly, the map a 7→ ↓a establishes order-isomorphism
between the posets (M(L),6) and (Y (L),⊆).

Consequently, if L is a finite lattice, then there is an
order-isomorphism between the posets (J(L),6) and (M(L),6).



Prime filters and prime ideals

Since every filter of a finite lattice L is principal, from the above
we obtain:

Theorem: In a finite lattice the map a 7→ ↑a establishes
order-isomorphism between the posets (J(L),>) and (X (L),⊆).

Similarly, the map a 7→ ↓a establishes order-isomorphism
between the posets (M(L),6) and (Y (L),⊆).

Consequently, if L is a finite lattice, then there is an
order-isomorphism between the posets (J(L),6) and (M(L),6).



Prime filters and prime ideals

Since every filter of a finite lattice L is principal, from the above
we obtain:

Theorem: In a finite lattice the map a 7→ ↑a establishes
order-isomorphism between the posets (J(L),>) and (X (L),⊆).

Similarly, the map a 7→ ↓a establishes order-isomorphism
between the posets (M(L),6) and (Y (L),⊆).

Consequently, if L is a finite lattice, then there is an
order-isomorphism between the posets (J(L),6) and (M(L),6).



Prime filters and prime ideals

Since every filter of a finite lattice L is principal, from the above
we obtain:

Theorem: In a finite lattice the map a 7→ ↑a establishes
order-isomorphism between the posets (J(L),>) and (X (L),⊆).

Similarly, the map a 7→ ↓a establishes order-isomorphism
between the posets (M(L),6) and (Y (L),⊆).

Consequently, if L is a finite lattice, then there is an
order-isomorphism between the posets (J(L),6) and (M(L),6).



From join-primes to prime filters

As we already saw, in the infinite case we may not have enough
join-prime elements.

In fact, we may have none! To give a
representation of infinite latices, we will work with prime filters
instead.

Let L be a distributive lattice. We may as well assume that L is
bounded. (If not, we can always adjoin new top and bottom to
L.)

We define φ : L→P(X (L)) by

φ(a) = {x ∈X (L) | a ∈ x}
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Representation of distributive lattices

Lemma:
1 φ(0) = ∅

2 φ(1) = X (L)
3 φ(a ∧ b) = φ(a) ∩ φ(b)
4 φ(a ∨ b) = φ(a) ∪ φ(b)

Proof: Since 0 belongs to no prime filter and 1 belongs to every
prime filter, we obtain φ(0) = ∅ and φ(1) = X (L). Moreover

x ∈ φ(a ∧ b) iff
a ∧ b ∈ x iff
a ∈ x and b ∈ x iff
x ∈ φ(a) and x ∈ φ(b) iff
x ∈ φ(a) ∩ φ(b)
Thus φ(a ∧ b) = φ(a) ∩ φ(b).
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Representation of distributive lattices

Furthermore, x ∈ φ(a ∨ b) iff a ∨ b ∈ x.

Since x is prime, this is equivalent to a ∈ x or b ∈ x

which is equivalent to x ∈ φ(a) or x ∈ φ(b)

which happens iff x ∈ φ(a) ∪ φ(b).

Thus φ(a ∨ b) = φ(a) ∪ φ(b).

Remark: Note that φ(a ∨ b) = φ(a) ∪ φ(b) is the only place in
the lemma where we require our filters to be prime!
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Representation of distributive lattices

Therefore, φ is a lattice homomorphism from L into P(X (L)).

But we can say more.

Lemma: φ(a) ∈ U (X (L)) for each a ∈ L.

Proof: Let x ∈ φ(a) and x ⊆ y. Then a ∈ x, and as x ⊆ y, we
obtain a ∈ y. Therefore y ∈ φ(a), and so φ(a) ∈ U (X (L)).

Therefore, φ is a lattice homomorphism from L into U (X (L)).

Our main concern is whether φ is 1-1. Luckily it is. But it
requires an important lemma about the behavior of prime
filters, known as the Stone lemma. We will only state it and skip
the proof.
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filter of L and I be an ideal of L.

If F and I are disjoint then there
exists a prime filter x of L containing F and disjoint from I.
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Representation of distributive lattices

Having the Stone lemma available, it is easy to show that φ is
1-1.

Lemma: φ : L→ U (X (L)) is 1-1.

Proof: Let a, b ∈ L and a 6= b. Then either a 66 b or b 66 a.
Without loss of generality we may assume that a 66 b.
Consequently, the filter ↑a is disjoint from the ideal ↓b. By
Stone’s Lemma, there exists x ∈X (L) such that ↑a ⊆ x and
x ∩ ↓b = ∅. Therefore a ∈ x and b /∈ x. Thus x ∈ φ(a) and
x /∈ φ(b) so φ(a) 6= φ(b) and so φ is 1-1.

As a consequence, we arrive at the following representation
theorem for distributive lattices:

Representation Theorem: Each bounded distributive lattice L
is isomorphic to a sublattice of U (X (L)). Therefore each
bounded distributive lattice can be represented as a sublattice of
the lattice of upsets of some poset.



Representation of distributive lattices

Having the Stone lemma available, it is easy to show that φ is
1-1.

Lemma: φ : L→ U (X (L)) is 1-1.

Proof: Let a, b ∈ L and a 6= b. Then either a 66 b or b 66 a.
Without loss of generality we may assume that a 66 b.
Consequently, the filter ↑a is disjoint from the ideal ↓b. By
Stone’s Lemma, there exists x ∈X (L) such that ↑a ⊆ x and
x ∩ ↓b = ∅. Therefore a ∈ x and b /∈ x. Thus x ∈ φ(a) and
x /∈ φ(b) so φ(a) 6= φ(b) and so φ is 1-1.

As a consequence, we arrive at the following representation
theorem for distributive lattices:

Representation Theorem: Each bounded distributive lattice L
is isomorphic to a sublattice of U (X (L)). Therefore each
bounded distributive lattice can be represented as a sublattice of
the lattice of upsets of some poset.



Representation of distributive lattices

Having the Stone lemma available, it is easy to show that φ is
1-1.

Lemma: φ : L→ U (X (L)) is 1-1.

Proof: Let a, b ∈ L and a 6= b.

Then either a 66 b or b 66 a.
Without loss of generality we may assume that a 66 b.
Consequently, the filter ↑a is disjoint from the ideal ↓b. By
Stone’s Lemma, there exists x ∈X (L) such that ↑a ⊆ x and
x ∩ ↓b = ∅. Therefore a ∈ x and b /∈ x. Thus x ∈ φ(a) and
x /∈ φ(b) so φ(a) 6= φ(b) and so φ is 1-1.

As a consequence, we arrive at the following representation
theorem for distributive lattices:

Representation Theorem: Each bounded distributive lattice L
is isomorphic to a sublattice of U (X (L)). Therefore each
bounded distributive lattice can be represented as a sublattice of
the lattice of upsets of some poset.



Representation of distributive lattices

Having the Stone lemma available, it is easy to show that φ is
1-1.

Lemma: φ : L→ U (X (L)) is 1-1.

Proof: Let a, b ∈ L and a 6= b. Then either a 66 b or b 66 a.

Without loss of generality we may assume that a 66 b.
Consequently, the filter ↑a is disjoint from the ideal ↓b. By
Stone’s Lemma, there exists x ∈X (L) such that ↑a ⊆ x and
x ∩ ↓b = ∅. Therefore a ∈ x and b /∈ x. Thus x ∈ φ(a) and
x /∈ φ(b) so φ(a) 6= φ(b) and so φ is 1-1.

As a consequence, we arrive at the following representation
theorem for distributive lattices:

Representation Theorem: Each bounded distributive lattice L
is isomorphic to a sublattice of U (X (L)). Therefore each
bounded distributive lattice can be represented as a sublattice of
the lattice of upsets of some poset.



Representation of distributive lattices

Having the Stone lemma available, it is easy to show that φ is
1-1.

Lemma: φ : L→ U (X (L)) is 1-1.

Proof: Let a, b ∈ L and a 6= b. Then either a 66 b or b 66 a.
Without loss of generality we may assume that a 66 b.

Consequently, the filter ↑a is disjoint from the ideal ↓b. By
Stone’s Lemma, there exists x ∈X (L) such that ↑a ⊆ x and
x ∩ ↓b = ∅. Therefore a ∈ x and b /∈ x. Thus x ∈ φ(a) and
x /∈ φ(b) so φ(a) 6= φ(b) and so φ is 1-1.

As a consequence, we arrive at the following representation
theorem for distributive lattices:

Representation Theorem: Each bounded distributive lattice L
is isomorphic to a sublattice of U (X (L)). Therefore each
bounded distributive lattice can be represented as a sublattice of
the lattice of upsets of some poset.



Representation of distributive lattices

Having the Stone lemma available, it is easy to show that φ is
1-1.

Lemma: φ : L→ U (X (L)) is 1-1.

Proof: Let a, b ∈ L and a 6= b. Then either a 66 b or b 66 a.
Without loss of generality we may assume that a 66 b.
Consequently, the filter ↑a is disjoint from the ideal ↓b.

By
Stone’s Lemma, there exists x ∈X (L) such that ↑a ⊆ x and
x ∩ ↓b = ∅. Therefore a ∈ x and b /∈ x. Thus x ∈ φ(a) and
x /∈ φ(b) so φ(a) 6= φ(b) and so φ is 1-1.

As a consequence, we arrive at the following representation
theorem for distributive lattices:

Representation Theorem: Each bounded distributive lattice L
is isomorphic to a sublattice of U (X (L)). Therefore each
bounded distributive lattice can be represented as a sublattice of
the lattice of upsets of some poset.



Representation of distributive lattices

Having the Stone lemma available, it is easy to show that φ is
1-1.

Lemma: φ : L→ U (X (L)) is 1-1.

Proof: Let a, b ∈ L and a 6= b. Then either a 66 b or b 66 a.
Without loss of generality we may assume that a 66 b.
Consequently, the filter ↑a is disjoint from the ideal ↓b. By
Stone’s Lemma, there exists x ∈X (L) such that ↑a ⊆ x and
x ∩ ↓b = ∅.

Therefore a ∈ x and b /∈ x. Thus x ∈ φ(a) and
x /∈ φ(b) so φ(a) 6= φ(b) and so φ is 1-1.

As a consequence, we arrive at the following representation
theorem for distributive lattices:

Representation Theorem: Each bounded distributive lattice L
is isomorphic to a sublattice of U (X (L)). Therefore each
bounded distributive lattice can be represented as a sublattice of
the lattice of upsets of some poset.



Representation of distributive lattices

Having the Stone lemma available, it is easy to show that φ is
1-1.

Lemma: φ : L→ U (X (L)) is 1-1.

Proof: Let a, b ∈ L and a 6= b. Then either a 66 b or b 66 a.
Without loss of generality we may assume that a 66 b.
Consequently, the filter ↑a is disjoint from the ideal ↓b. By
Stone’s Lemma, there exists x ∈X (L) such that ↑a ⊆ x and
x ∩ ↓b = ∅. Therefore a ∈ x and b /∈ x.

Thus x ∈ φ(a) and
x /∈ φ(b) so φ(a) 6= φ(b) and so φ is 1-1.

As a consequence, we arrive at the following representation
theorem for distributive lattices:

Representation Theorem: Each bounded distributive lattice L
is isomorphic to a sublattice of U (X (L)). Therefore each
bounded distributive lattice can be represented as a sublattice of
the lattice of upsets of some poset.



Representation of distributive lattices

Having the Stone lemma available, it is easy to show that φ is
1-1.

Lemma: φ : L→ U (X (L)) is 1-1.

Proof: Let a, b ∈ L and a 6= b. Then either a 66 b or b 66 a.
Without loss of generality we may assume that a 66 b.
Consequently, the filter ↑a is disjoint from the ideal ↓b. By
Stone’s Lemma, there exists x ∈X (L) such that ↑a ⊆ x and
x ∩ ↓b = ∅. Therefore a ∈ x and b /∈ x. Thus x ∈ φ(a) and
x /∈ φ(b)

so φ(a) 6= φ(b) and so φ is 1-1.

As a consequence, we arrive at the following representation
theorem for distributive lattices:

Representation Theorem: Each bounded distributive lattice L
is isomorphic to a sublattice of U (X (L)). Therefore each
bounded distributive lattice can be represented as a sublattice of
the lattice of upsets of some poset.



Representation of distributive lattices

Having the Stone lemma available, it is easy to show that φ is
1-1.

Lemma: φ : L→ U (X (L)) is 1-1.

Proof: Let a, b ∈ L and a 6= b. Then either a 66 b or b 66 a.
Without loss of generality we may assume that a 66 b.
Consequently, the filter ↑a is disjoint from the ideal ↓b. By
Stone’s Lemma, there exists x ∈X (L) such that ↑a ⊆ x and
x ∩ ↓b = ∅. Therefore a ∈ x and b /∈ x. Thus x ∈ φ(a) and
x /∈ φ(b) so φ(a) 6= φ(b)

and so φ is 1-1.

As a consequence, we arrive at the following representation
theorem for distributive lattices:

Representation Theorem: Each bounded distributive lattice L
is isomorphic to a sublattice of U (X (L)). Therefore each
bounded distributive lattice can be represented as a sublattice of
the lattice of upsets of some poset.



Representation of distributive lattices

Having the Stone lemma available, it is easy to show that φ is
1-1.

Lemma: φ : L→ U (X (L)) is 1-1.

Proof: Let a, b ∈ L and a 6= b. Then either a 66 b or b 66 a.
Without loss of generality we may assume that a 66 b.
Consequently, the filter ↑a is disjoint from the ideal ↓b. By
Stone’s Lemma, there exists x ∈X (L) such that ↑a ⊆ x and
x ∩ ↓b = ∅. Therefore a ∈ x and b /∈ x. Thus x ∈ φ(a) and
x /∈ φ(b) so φ(a) 6= φ(b) and so φ is 1-1.

As a consequence, we arrive at the following representation
theorem for distributive lattices:

Representation Theorem: Each bounded distributive lattice L
is isomorphic to a sublattice of U (X (L)). Therefore each
bounded distributive lattice can be represented as a sublattice of
the lattice of upsets of some poset.



Representation of distributive lattices

Having the Stone lemma available, it is easy to show that φ is
1-1.

Lemma: φ : L→ U (X (L)) is 1-1.

Proof: Let a, b ∈ L and a 6= b. Then either a 66 b or b 66 a.
Without loss of generality we may assume that a 66 b.
Consequently, the filter ↑a is disjoint from the ideal ↓b. By
Stone’s Lemma, there exists x ∈X (L) such that ↑a ⊆ x and
x ∩ ↓b = ∅. Therefore a ∈ x and b /∈ x. Thus x ∈ φ(a) and
x /∈ φ(b) so φ(a) 6= φ(b) and so φ is 1-1.

As a consequence, we arrive at the following representation
theorem for distributive lattices:

Representation Theorem: Each bounded distributive lattice L
is isomorphic to a sublattice of U (X (L)). Therefore each
bounded distributive lattice can be represented as a sublattice of
the lattice of upsets of some poset.



Representation of distributive lattices

Having the Stone lemma available, it is easy to show that φ is
1-1.

Lemma: φ : L→ U (X (L)) is 1-1.

Proof: Let a, b ∈ L and a 6= b. Then either a 66 b or b 66 a.
Without loss of generality we may assume that a 66 b.
Consequently, the filter ↑a is disjoint from the ideal ↓b. By
Stone’s Lemma, there exists x ∈X (L) such that ↑a ⊆ x and
x ∩ ↓b = ∅. Therefore a ∈ x and b /∈ x. Thus x ∈ φ(a) and
x /∈ φ(b) so φ(a) 6= φ(b) and so φ is 1-1.

As a consequence, we arrive at the following representation
theorem for distributive lattices:

Representation Theorem: Each bounded distributive lattice L
is isomorphic to a sublattice of U (X (L)).

Therefore each
bounded distributive lattice can be represented as a sublattice of
the lattice of upsets of some poset.



Representation of distributive lattices

Having the Stone lemma available, it is easy to show that φ is
1-1.

Lemma: φ : L→ U (X (L)) is 1-1.

Proof: Let a, b ∈ L and a 6= b. Then either a 66 b or b 66 a.
Without loss of generality we may assume that a 66 b.
Consequently, the filter ↑a is disjoint from the ideal ↓b. By
Stone’s Lemma, there exists x ∈X (L) such that ↑a ⊆ x and
x ∩ ↓b = ∅. Therefore a ∈ x and b /∈ x. Thus x ∈ φ(a) and
x /∈ φ(b) so φ(a) 6= φ(b) and so φ is 1-1.

As a consequence, we arrive at the following representation
theorem for distributive lattices:

Representation Theorem: Each bounded distributive lattice L
is isomorphic to a sublattice of U (X (L)). Therefore each
bounded distributive lattice can be represented as a sublattice of
the lattice of upsets of some poset.



Representation of distributive lattices

However, L may not be isomorphic to U (X (L)).

Indeed,
U (X (L)) is always a complete lattice. Therefore if L is not
complete, then L can not be isomorphic to U (X (L)).

Is there any way to single the φ-image of L out of U (X (L))?
The answer is YES but it involves the notion of topology—one of
the fundamental notions in mathematics!

We will outline the basic notions of topology needed for our
purposes in the next lecture.



Representation of distributive lattices

However, L may not be isomorphic to U (X (L)). Indeed,
U (X (L)) is always a complete lattice.

Therefore if L is not
complete, then L can not be isomorphic to U (X (L)).

Is there any way to single the φ-image of L out of U (X (L))?
The answer is YES but it involves the notion of topology—one of
the fundamental notions in mathematics!

We will outline the basic notions of topology needed for our
purposes in the next lecture.



Representation of distributive lattices

However, L may not be isomorphic to U (X (L)). Indeed,
U (X (L)) is always a complete lattice. Therefore if L is not
complete, then L can not be isomorphic to U (X (L)).

Is there any way to single the φ-image of L out of U (X (L))?
The answer is YES but it involves the notion of topology—one of
the fundamental notions in mathematics!

We will outline the basic notions of topology needed for our
purposes in the next lecture.



Representation of distributive lattices

However, L may not be isomorphic to U (X (L)). Indeed,
U (X (L)) is always a complete lattice. Therefore if L is not
complete, then L can not be isomorphic to U (X (L)).

Is there any way to single the φ-image of L out of U (X (L))?

The answer is YES but it involves the notion of topology—one of
the fundamental notions in mathematics!

We will outline the basic notions of topology needed for our
purposes in the next lecture.



Representation of distributive lattices

However, L may not be isomorphic to U (X (L)). Indeed,
U (X (L)) is always a complete lattice. Therefore if L is not
complete, then L can not be isomorphic to U (X (L)).

Is there any way to single the φ-image of L out of U (X (L))?
The answer is YES

but it involves the notion of topology—one of
the fundamental notions in mathematics!

We will outline the basic notions of topology needed for our
purposes in the next lecture.



Representation of distributive lattices

However, L may not be isomorphic to U (X (L)). Indeed,
U (X (L)) is always a complete lattice. Therefore if L is not
complete, then L can not be isomorphic to U (X (L)).

Is there any way to single the φ-image of L out of U (X (L))?
The answer is YES but it involves the notion of topology—one of
the fundamental notions in mathematics!

We will outline the basic notions of topology needed for our
purposes in the next lecture.



Representation of distributive lattices

However, L may not be isomorphic to U (X (L)). Indeed,
U (X (L)) is always a complete lattice. Therefore if L is not
complete, then L can not be isomorphic to U (X (L)).

Is there any way to single the φ-image of L out of U (X (L))?
The answer is YES but it involves the notion of topology—one of
the fundamental notions in mathematics!

We will outline the basic notions of topology needed for our
purposes in the next lecture.


