Lattices and Topology

Guram Bezhanishvili and Mamuka Jibladze

ESSLLI'08
11-15.VIII. 2008

Lecture 2: Representation of distributive lattices

Review of the first lecture

Review of the first lecture

- We have defined posets (partially ordered sets—sets equipped with a reflexive, antisymmetric, transitive binary relation);

Review of the first lecture

- We have defined posets (partially ordered sets—sets equipped with a reflexive, antisymmetric, transitive binary relation);
- We have defined lattices as posets whose all nonempty finite subsets possess meet (glb, greatest lower bound) and join (lub, least upper bound);

Review of the first lecture

- We have defined posets (partially ordered sets—sets equipped with a reflexive, antisymmetric, transitive binary relation);
- We have defined lattices as posets whose all nonempty finite subsets possess meet (glb, greatest lower bound) and join (lub, least upper bound);
- We have defined bounded lattices as lattices having the largest and least elements;

Review of the first lecture

- We have defined posets (partially ordered sets—sets equipped with a reflexive, antisymmetric, transitive binary relation);
- We have defined lattices as posets whose all nonempty finite subsets possess meet (glb, greatest lower bound) and join (lub, least upper bound);
- We have defined bounded lattices as lattices having the largest and least elements;
- We have defined complete lattices as posets whose all subsets possess glb and lub;

Review of the first lecture

- We have defined posets (partially ordered sets-sets equipped with a reflexive, antisymmetric, transitive binary relation);
- We have defined lattices as posets whose all nonempty finite subsets possess meet (glb, greatest lower bound) and join (lub, least upper bound);
- We have defined bounded lattices as lattices having the largest and least elements;
- We have defined complete lattices as posets whose all subsets possess glb and lub;
- We have shown that lattices can be equivalently defined as sets equipped with two binary operations \wedge and \vee which are idempotent, commutative, associative, and satisfy the absorption laws;

Review of the first lecture

- We have defined distributive lattices and described the Birkhoff characterization asserting that a lattice is distributive iff it does not have any sublattices isomorphic to the pentagon or the diamond;

Review of the first lecture

- We have defined distributive lattices and described the Birkhoff characterization asserting that a lattice is distributive iff it does not have any sublattices isomorphic to the pentagon or the diamond;
- We have defined Boolean lattices as those distributive lattices all of whose elements have the complement;

Review of the first lecture

- We have defined distributive lattices and described the Birkhoff characterization asserting that a lattice is distributive iff it does not have any sublattices isomorphic to the pentagon or the diamond;
- We have defined Boolean lattices as those distributive lattices all of whose elements have the complement;
- Finally, we have defined Heyting lattices as those distributive lattices possessing the implication for each pair of their elements.

Review of the first lecture

Posets

Review of the first lecture

Short outline of the second lecture

Lecture 2: Representation of distributive lattices

Short outline of the second lecture

Lecture 2: Representation of distributive lattices

- Join-prime and meet-prime elements

Short outline of the second lecture

Lecture 2: Representation of distributive lattices

- Join-prime and meet-prime elements
- Birkhoff's duality between finite distributive lattices and finite posets

Short outline of the second lecture

Lecture 2: Representation of distributive lattices

- Join-prime and meet-prime elements
- Birkhoff's duality between finite distributive lattices and finite posets
- Prime filters and prime ideals

Short outline of the second lecture

Lecture 2: Representation of distributive lattices

- Join-prime and meet-prime elements
- Birkhoff's duality between finite distributive lattices and finite posets
- Prime filters and prime ideals
- Representation of distributive lattices

Prime elements

From now on we will mainly concentrate on distributive lattices

Prime elements

From now on we will mainly concentrate on distributive lattices and develop representation theorems for them.

Prime elements

From now on we will mainly concentrate on distributive lattices and develop representation theorems for them.

Our first task is to develop representation of finite distributive lattices.

Prime elements

From now on we will mainly concentrate on distributive lattices and develop representation theorems for them.

Our first task is to develop representation of finite distributive lattices. This was first done by Garrett Birkhoff in the 1930ies.

Prime elements

From now on we will mainly concentrate on distributive lattices and develop representation theorems for them.

Our first task is to develop representation of finite distributive lattices. This was first done by Garrett Birkhoff in the 1930ies.

Our main tool will be the join-prime elements of the lattice.

Prime elements

From now on we will mainly concentrate on distributive lattices and develop representation theorems for them.

Our first task is to develop representation of finite distributive lattices. This was first done by Garrett Birkhoff in the 1930ies.

Our main tool will be the join-prime elements of the lattice.
Let L be a lattice. We call an element $j \neq 0$ of L join-prime if $j \leqslant a \vee b$ implies $j \leqslant a$ or $j \leqslant b$ for all $a, b \in L$.

Prime elements

From now on we will mainly concentrate on distributive lattices and develop representation theorems for them.

Our first task is to develop representation of finite distributive lattices. This was first done by Garrett Birkhoff in the 1930ies.

Our main tool will be the join-prime elements of the lattice.
Let L be a lattice. We call an element $j \neq 0$ of L join-prime if $j \leqslant a \vee b$ implies $j \leqslant a$ or $j \leqslant b$ for all $a, b \in L$. Let $\mathfrak{J}(L)$ denote the set of join-prime elements of L.

Prime elements

From now on we will mainly concentrate on distributive lattices and develop representation theorems for them.

Our first task is to develop representation of finite distributive lattices. This was first done by Garrett Birkhoff in the 1930ies.

Our main tool will be the join-prime elements of the lattice.
Let L be a lattice. We call an element $j \neq 0$ of L join-prime if $j \leqslant a \vee b$ implies $j \leqslant a$ or $j \leqslant b$ for all $a, b \in L$. Let $\mathfrak{J}(L)$ denote the set of join-prime elements of L.

Dually, we call an element $m \neq 1$ of L meet-prime if $a \wedge b \leqslant m$ implies $a \leqslant m$ or $b \leqslant m$ for all $a, b \in L$.

Prime elements

From now on we will mainly concentrate on distributive lattices and develop representation theorems for them.

Our first task is to develop representation of finite distributive lattices. This was first done by Garrett Birkhoff in the 1930ies.

Our main tool will be the join-prime elements of the lattice.
Let L be a lattice. We call an element $j \neq 0$ of L join-prime if $j \leqslant a \vee b$ implies $j \leqslant a$ or $j \leqslant b$ for all $a, b \in L$. Let $\mathfrak{J}(L)$ denote the set of join-prime elements of L.

Dually, we call an element $m \neq 1$ of L meet-prime if $a \wedge b \leqslant m$ implies $a \leqslant m$ or $b \leqslant m$ for all $a, b \in L$. Let $\mathfrak{M}(L)$ denote the set of meet-prime elements of L.

Examples

In the lattice $\mathscr{U}(P)$ of upsets of a poset P, the upsets

$$
\uparrow p:=\{x \in P: x \geqslant p\} .
$$

are join-prime elements for any $p \in P$.

Examples

In the lattice $\mathscr{U}(P)$ of upsets of a poset P, the upsets

$$
\uparrow p:=\{x \in P: x \geqslant p\} .
$$

are join-prime elements for any $p \in P$.

Similarly, in the lattice $\mathscr{D}(P)$ of downsets of P, the downsets

$$
\downarrow p=\{x \in P: x \leqslant p\}
$$

are join-prime for all $p \in P$.

Examples

Example:

Examples

Example:

$$
\mathfrak{J}(L)=\{a, b, d, e, z\}
$$

Examples

Example:

$\mathfrak{M}(L)=\{a, d, e, f, 0\}$.

Duality between finite distributive lattices and finite posets

The key fact for establishing duality between finite distributive lattices and finite posets is the following

Duality between finite distributive lattices and finite posets

The key fact for establishing duality between finite distributive lattices and finite posets is the following
Theorem: If L is a finite distributive lattice, then each element $a \neq 0$ of L is the join of the join-prime elements of L underneath a; that is,

$$
a=\bigvee\{j \in \mathfrak{J}(L): j \leqslant a\} .
$$

Duality between finite distributive lattices and finite posets

The key fact for establishing duality between finite distributive lattices and finite posets is the following
Theorem: If L is a finite distributive lattice, then each element $a \neq 0$ of L is the join of the join-prime elements of L underneath a; that is,

$$
a=\bigvee\{j \in \mathfrak{J}(L): j \leqslant a\}
$$

Proof: It is sufficient to show that if $a \nless b$, then there exists $j \in \mathfrak{J}(L)$ such that $j \leqslant a$ and $j \nless b$.

Duality between finite distributive lattices and finite posets

The key fact for establishing duality between finite distributive lattices and finite posets is the following
Theorem: If L is a finite distributive lattice, then each element $a \neq 0$ of L is the join of the join-prime elements of L underneath a; that is,

$$
a=\bigvee\{j \in \mathfrak{J}(L): j \leqslant a\}
$$

Proof: It is sufficient to show that if $a \nless b$, then there exists $j \in \mathfrak{J}(L)$ such that $j \leqslant a$ and $j \nless b$. If a is join-prime, then we are done.

Duality between finite distributive lattices and finite posets

The key fact for establishing duality between finite distributive lattices and finite posets is the following
Theorem: If L is a finite distributive lattice, then each element $a \neq 0$ of L is the join of the join-prime elements of L underneath a; that is,

$$
a=\bigvee\{j \in \mathfrak{J}(L): j \leqslant a\}
$$

Proof: It is sufficient to show that if $a \nless b$, then there exists $j \in \mathfrak{J}(L)$ such that $j \leqslant a$ and $j \nless b$. If a is join-prime, then we are done. If not, then there exist $c, d \in L$ such that $c \vee d=a$.

Duality between finite distributive lattices and finite posets

The key fact for establishing duality between finite distributive lattices and finite posets is the following
Theorem: If L is a finite distributive lattice, then each element $a \neq 0$ of L is the join of the join-prime elements of L underneath a; that is,

$$
a=\bigvee\{j \in \mathfrak{J}(L): j \leqslant a\}
$$

Proof: It is sufficient to show that if $a \nless b$, then there exists $j \in \mathfrak{J}(L)$ such that $j \leqslant a$ and $j \notin b$. If a is join-prime, then we are done. If not, then there exist $c, d \in L$ such that $c \vee d=a$. Since $a \nless b$, one of c, d is not underneath b.

Duality between finite distributive lattices and finite posets

The key fact for establishing duality between finite distributive lattices and finite posets is the following
Theorem: If L is a finite distributive lattice, then each element $a \neq 0$ of L is the join of the join-prime elements of L underneath a; that is,

$$
a=\bigvee\{j \in \mathfrak{J}(L): j \leqslant a\}
$$

Proof: It is sufficient to show that if $a \nless b$, then there exists $j \in \mathfrak{J}(L)$ such that $j \leqslant a$ and $j \nless b$. If a is join-prime, then we are done. If not, then there exist $c, d \in L$ such that $c \vee d=a$. Since $a \nless b$, one of c, d is not underneath b. Suppose that $c \nless b$.

Duality between finite distributive lattices and finite posets

The key fact for establishing duality between finite distributive lattices and finite posets is the following
Theorem: If L is a finite distributive lattice, then each element $a \neq 0$ of L is the join of the join-prime elements of L underneath a; that is,

$$
a=\bigvee\{j \in \mathfrak{J}(L): j \leqslant a\}
$$

Proof: It is sufficient to show that if $a \nless b$, then there exists $j \in \mathfrak{J}(L)$ such that $j \leqslant a$ and $j \notin b$. If a is join-prime, then we are done. If not, then there exist $c, d \in L$ such that $c \vee d=a$. Since $a \nless b$, one of c, d is not underneath b. Suppose that $c \nless b$. If c is join-prime, then we are done.

Duality between finite distributive lattices and finite posets

The key fact for establishing duality between finite distributive lattices and finite posets is the following
Theorem: If L is a finite distributive lattice, then each element $a \neq 0$ of L is the join of the join-prime elements of L underneath a; that is,

$$
a=\bigvee\{j \in \mathfrak{J}(L): j \leqslant a\}
$$

Proof: It is sufficient to show that if $a \nless b$, then there exists $j \in \mathfrak{J}(L)$ such that $j \leqslant a$ and $j \nless b$. If a is join-prime, then we are done. If not, then there exist $c, d \in L$ such that $c \vee d=a$. Since $a \nless b$, one of c, d is not underneath b. Suppose that $c \nless b$. If c is join-prime, then we are done. If not, then the process will continue.

Duality between finite distributive lattices and finite posets

The key fact for establishing duality between finite distributive lattices and finite posets is the following
Theorem: If L is a finite distributive lattice, then each element $a \neq 0$ of L is the join of the join-prime elements of L underneath a; that is,

$$
a=\bigvee\{j \in \mathfrak{J}(L): j \leqslant a\}
$$

Proof: It is sufficient to show that if $a \nless b$, then there exists $j \in \mathfrak{J}(L)$ such that $j \leqslant a$ and $j \nless b$. If a is join-prime, then we are done. If not, then there exist $c, d \in L$ such that $c \vee d=a$. Since $a \nless b$, one of c, d is not underneath b. Suppose that $c \nless b$. If c is join-prime, then we are done. If not, then the process will continue. Since L is finite, the process will have to terminate.

Duality between finite distributive lattices and finite posets

The key fact for establishing duality between finite distributive lattices and finite posets is the following
Theorem: If L is a finite distributive lattice, then each element $a \neq 0$ of L is the join of the join-prime elements of L underneath a; that is,

$$
a=\bigvee\{j \in \mathfrak{J}(L): j \leqslant a\} .
$$

Proof: It is sufficient to show that if $a \nless b$, then there exists $j \in \mathfrak{J}(L)$ such that $j \leqslant a$ and $j \nless b$. If a is join-prime, then we are done. If not, then there exist $c, d \in L$ such that $c \vee d=a$. Since $a \nless b$, one of c, d is not underneath b. Suppose that $c \nless b$. If c is join-prime, then we are done. If not, then the process will continue. Since L is finite, the process will have to terminate. The stage where it terminates produces a join-prime element j of L such that $j \leqslant a$ and $j \nless b$.

Duality between finite distributive lattices and finite posets

The key fact for establishing duality between finite distributive lattices and finite posets is the following
Theorem: If L is a finite distributive lattice, then each element $a \neq 0$ of L is the join of the join-prime elements of L underneath a; that is,

$$
a=\bigvee\{j \in \mathfrak{J}(L): j \leqslant a\} .
$$

Proof: It is sufficient to show that if $a \nless b$, then there exists $j \in \mathfrak{J}(L)$ such that $j \leqslant a$ and $j \nless b$. If a is join-prime, then we are done. If not, then there exist $c, d \in L$ such that $c \vee d=a$. Since $a \nless b$, one of c, d is not underneath b. Suppose that $c \nless b$. If c is join-prime, then we are done. If not, then the process will continue. Since L is finite, the process will have to terminate. The stage where it terminates produces a join-prime element j of L such that $j \leqslant a$ and $j \nless b$.
Remark: Note that all we used in the proof is that there are no infinite descending chains in L.

Duality between finite distributive lattices and finite posets

Now with each finite distributive lattice L we associate its dual poset $L_{*}=(\mathfrak{J}(L), \geqslant)$ of join-prime elements of L.

Duality between finite distributive lattices and finite posets

Now with each finite distributive lattice L we associate its dual poset $L_{*}=(\mathfrak{J}(L), \geqslant)$ of join-prime elements of L.

Conversely, with each finite poset (P, \leqslant) we associate the distributive lattice $P^{*}=\mathscr{U}(P)$ of upsets of P.

Duality between finite distributive lattices and finite posets

Now with each finite distributive lattice L we associate its dual poset $L_{*}=(\mathfrak{J}(L), \geqslant)$ of join-prime elements of L.

Conversely, with each finite poset (P, \leqslant) we associate the distributive lattice $P^{*}=\mathscr{U}(P)$ of upsets of P.

So we have

$$
L \mapsto L_{*} \mapsto L_{*}^{*}
$$

and

$$
P \mapsto P^{*} \mapsto P_{*}^{*}
$$

Duality between finite distributive lattices and finite posets

Theorem: L is isomorphic to L_{*}^{*}.

Duality between finite distributive lattices and finite posets

Theorem: L is isomorphic to $L_{*}{ }^{*}$.
Proof (Sketch). Define $\phi: L \rightarrow L_{*}{ }^{*}$ by $\phi(a)=\{j \in \mathfrak{J}(L): j \leqslant a\}$.

Duality between finite distributive lattices and finite posets

Theorem: L is isomorphic to $L_{*}{ }^{*}$.
Proof (Sketch). Define $\phi: L \rightarrow L_{*}^{*}$ by $\phi(a)=\{j \in \mathfrak{J}(L): j \leqslant a\}$. It follows from transitivity of \geqslant that $\{j \in \mathfrak{J}(L): j \leqslant a\}$ is an upset of L_{*}, thus ϕ is well-defined.

Duality between finite distributive lattices and finite posets

Theorem: L is isomorphic to $L_{*}{ }^{*}$.
Proof (Sketch). Define $\phi: L \rightarrow L_{*}^{*}$ by $\phi(a)=\{j \in \mathfrak{J}(L): j \leqslant a\}$. It follows from transitivity of \geqslant that $\{j \in \mathfrak{J}(L): j \leqslant a\}$ is an upset of L_{*}, thus ϕ is well-defined.
$\phi(a \wedge b)=\phi(a) \cap \phi(b)$ by definition of meets;

Duality between finite distributive lattices and finite posets

Theorem: L is isomorphic to $L_{*}{ }^{*}$.
Proof (Sketch). Define $\phi: L \rightarrow L_{*}{ }^{*}$ by $\phi(a)=\{j \in \mathfrak{J}(L): j \leqslant a\}$. It follows from transitivity of \geqslant that $\{j \in \mathfrak{J}(L): j \leqslant a\}$ is an upset of L_{*}, thus ϕ is well-defined.
$\phi(a \wedge b)=\phi(a) \cap \phi(b)$ by definition of meets;
$\phi(a \vee b)=\phi(a) \cup \phi(b)$ by definition of prime elements;

Duality between finite distributive lattices and finite posets

Theorem: L is isomorphic to $L_{*}{ }^{*}$.
Proof (Sketch). Define $\phi: L \rightarrow L_{*}^{*}$ by $\phi(a)=\{j \in \mathfrak{J}(L): j \leqslant a\}$. It follows from transitivity of \geqslant that $\{j \in \mathfrak{J}(L): j \leqslant a\}$ is an upset of L_{*}, thus ϕ is well-defined.
$\phi(a \wedge b)=\phi(a) \cap \phi(b)$ by definition of meets;
$\phi(a \vee b)=\phi(a) \cup \phi(b)$ by definition of prime elements; thus ϕ is a lattice homomorphism.

Duality between finite distributive lattices and finite posets

Theorem: L is isomorphic to $L_{*}{ }^{*}$.
Proof (Sketch). Define $\phi: L \rightarrow L_{*}{ }^{*}$ by $\phi(a)=\{j \in \mathfrak{J}(L): j \leqslant a\}$. It follows from transitivity of \geqslant that $\{j \in \mathfrak{J}(L): j \leqslant a\}$ is an upset of L_{*}, thus ϕ is well-defined.
$\phi(a \wedge b)=\phi(a) \cap \phi(b)$ by definition of meets;
$\phi(a \vee b)=\phi(a) \cup \phi(b)$ by definition of prime elements; thus ϕ is a lattice homomorphism.

To see that ϕ is onto, let U be an upset of L_{*}.

Duality between finite distributive lattices and finite posets

Theorem: L is isomorphic to $L_{*}{ }^{*}$.
Proof (Sketch). Define $\phi: L \rightarrow L_{*}{ }^{*}$ by $\phi(a)=\{j \in \mathfrak{J}(L): j \leqslant a\}$. It follows from transitivity of \geqslant that $\{j \in \mathfrak{J}(L): j \leqslant a\}$ is an upset of L_{*}, thus ϕ is well-defined.
$\phi(a \wedge b)=\phi(a) \cap \phi(b)$ by definition of meets;
$\phi(a \vee b)=\phi(a) \cup \phi(b)$ by definition of prime elements; thus ϕ is a lattice homomorphism.
To see that ϕ is onto, let U be an upset of L_{*}. Let $a=\bigvee U$.

Duality between finite distributive lattices and finite posets

Theorem: L is isomorphic to $L_{*}{ }^{*}$.
Proof (Sketch). Define $\phi: L \rightarrow L_{*}{ }^{*}$ by $\phi(a)=\{j \in \mathfrak{J}(L): j \leqslant a\}$. It follows from transitivity of \geqslant that $\{j \in \mathfrak{J}(L): j \leqslant a\}$ is an upset of L_{*}, thus ϕ is well-defined.
$\phi(a \wedge b)=\phi(a) \cap \phi(b)$ by definition of meets;
$\phi(a \vee b)=\phi(a) \cup \phi(b)$ by definition of prime elements; thus ϕ is a lattice homomorphism.

To see that ϕ is onto, let U be an upset of L_{*}. Let $a=\bigvee U$. It is easy to see that $U \subseteq \phi(a)$.

Duality between finite distributive lattices and finite posets

Theorem: L is isomorphic to L_{*}^{*}.
Proof (Sketch). Define $\phi: L \rightarrow L_{*}^{*}$ by $\phi(a)=\{j \in \mathfrak{J}(L): j \leqslant a\}$. It follows from transitivity of \geqslant that $\{j \in \mathfrak{J}(L): j \leqslant a\}$ is an upset of L_{*}, thus ϕ is well-defined.
$\phi(a \wedge b)=\phi(a) \cap \phi(b)$ by definition of meets;
$\phi(a \vee b)=\phi(a) \cup \phi(b)$ by definition of prime elements; thus ϕ is a lattice homomorphism.
To see that ϕ is onto, let U be an upset of L_{*}. Let $a=\bigvee U$. It is easy to see that $U \subseteq \phi(a)$. Moreover it follows from the defining property of prime elements that $\phi(a) \subseteq U$.

Duality between finite distributive lattices and finite posets

Theorem: L is isomorphic to L_{*}^{*}.
Proof (Sketch). Define $\phi: L \rightarrow L_{*}^{*}$ by $\phi(a)=\{j \in \mathfrak{J}(L): j \leqslant a\}$. It follows from transitivity of \geqslant that $\{j \in \mathfrak{J}(L): j \leqslant a\}$ is an upset of L_{*}, thus ϕ is well-defined.
$\phi(a \wedge b)=\phi(a) \cap \phi(b)$ by definition of meets;
$\phi(a \vee b)=\phi(a) \cup \phi(b)$ by definition of prime elements; thus ϕ is a lattice homomorphism.
To see that ϕ is onto, let U be an upset of L_{*}. Let $a=\bigvee U$. It is easy to see that $U \subseteq \phi(a)$. Moreover it follows from the defining property of prime elements that $\phi(a) \subseteq U$. Therefore $\phi(a)=U$, and so ϕ is onto.

Duality between finite distributive lattices and finite posets

Theorem: L is isomorphic to L_{*}^{*}.
Proof (Sketch). Define $\phi: L \rightarrow L_{*}^{*}$ by $\phi(a)=\{j \in \mathfrak{J}(L): j \leqslant a\}$. It follows from transitivity of \geqslant that $\{j \in \mathfrak{J}(L): j \leqslant a\}$ is an upset of L_{*}, thus ϕ is well-defined.
$\phi(a \wedge b)=\phi(a) \cap \phi(b)$ by definition of meets;
$\phi(a \vee b)=\phi(a) \cup \phi(b)$ by definition of prime elements; thus ϕ is a lattice homomorphism.
To see that ϕ is onto, let U be an upset of L_{*}. Let $a=\bigvee U$. It is easy to see that $U \subseteq \phi(a)$. Moreover it follows from the defining property of prime elements that $\phi(a) \subseteq U$. Therefore $\phi(a)=U$, and so ϕ is onto.
That ϕ is 1-1 follows from $a=\bigvee\{j \in \mathfrak{J}(L): j \leqslant a\}$ for each $a \in L$.

Duality between finite distributive lattices and finite posets

Theorem: L is isomorphic to L_{*}^{*}.
Proof (Sketch). Define $\phi: L \rightarrow L_{*}^{*}$ by $\phi(a)=\{j \in \mathfrak{J}(L): j \leqslant a\}$. It follows from transitivity of \geqslant that $\{j \in \mathfrak{J}(L): j \leqslant a\}$ is an upset of L_{*}, thus ϕ is well-defined.
$\phi(a \wedge b)=\phi(a) \cap \phi(b)$ by definition of meets;
$\phi(a \vee b)=\phi(a) \cup \phi(b)$ by definition of prime elements;
thus ϕ is a lattice homomorphism.
To see that ϕ is onto, let U be an upset of L_{*}. Let $a=\bigvee U$. It is easy to see that $U \subseteq \phi(a)$. Moreover it follows from the defining property of prime elements that $\phi(a) \subseteq U$. Therefore $\phi(a)=U$, and so ϕ is onto.
That ϕ is 1-1 follows from $a=\bigvee\{j \in \mathfrak{J}(L): j \leqslant a\}$ for each $a \in L$.
Thus ϕ is a lattice isomorphism.

Duality between finite distributive lattices and finite posets

Theorem: P is isomorphic to $P^{*}{ }_{*}$.

Duality between finite distributive lattices and finite posets

Theorem: P is isomorphic to $P^{*}{ }_{*}$.
Proof (Sketch). Define $\psi: P \rightarrow P^{*}{ }_{*}$ by $\psi(p)=\uparrow p$.

Duality between finite distributive lattices and finite posets

Theorem: P is isomorphic to $P^{*}{ }_{*}$.
Proof (Sketch). Define $\psi: P \rightarrow P^{*}{ }_{*}$ by $\psi(p)=\uparrow p$. As we saw, $\uparrow p$ is join-prime in $\mathscr{U}(P)$. Thus, ψ is well-defined.

Duality between finite distributive lattices and finite posets

Theorem: P is isomorphic to $P^{*}{ }_{*}$.
Proof (Sketch). Define $\psi: P \rightarrow P^{*}{ }_{*}$ by $\psi(p)=\uparrow p$. As we saw, $\uparrow p$ is join-prime in $\mathscr{U}(P)$. Thus, ψ is well-defined. Moreover ψ is clearly 1-1.

Duality between finite distributive lattices and finite posets

Theorem: P is isomorphic to $P^{*}{ }_{*}$.
Proof (Sketch). Define $\psi: P \rightarrow P^{*}{ }_{*}$ by $\psi(p)=\uparrow p$. As we saw, $\uparrow p$ is join-prime in $\mathscr{U}(P)$. Thus, ψ is well-defined. Moreover ψ is clearly 1-1. Next, since P is finite, every join-prime element of $\mathscr{U}(P)$ has the form $\uparrow p$ for some $p \in P$

Duality between finite distributive lattices and finite posets

Theorem: P is isomorphic to $P^{*}{ }_{*}$.
Proof (Sketch). Define $\psi: P \rightarrow P^{*}{ }_{*}$ by $\psi(p)=\uparrow p$. As we saw, $\uparrow p$ is join-prime in $\mathscr{U}(P)$. Thus, ψ is well-defined. Moreover ψ is clearly 1-1. Next, since P is finite, every join-prime element of $\mathscr{U}(P)$ has the form $\uparrow p$ for some $p \in P$, which means that ψ is onto.

Duality between finite distributive lattices and finite posets

Theorem: P is isomorphic to $P^{*}{ }_{*}$.
Proof (Sketch). Define $\psi: P \rightarrow P^{*}{ }_{*}$ by $\psi(p)=\uparrow p$. As we saw, $\uparrow p$ is join-prime in $\mathscr{U}(P)$. Thus, ψ is well-defined. Moreover ψ is clearly 1-1. Next, since P is finite, every join-prime element of $\mathscr{U}(P)$ has the form $\uparrow p$ for some $p \in P$, which means that ψ is onto. To show that ψ is an order-isomorphism, it remains to observe the following easy

Duality between finite distributive lattices and finite posets

Theorem: P is isomorphic to $P^{*}{ }_{*}$.
Proof (Sketch). Define $\psi: P \rightarrow P^{*}{ }_{*}$ by $\psi(p)=\uparrow p$. As we saw, $\uparrow p$ is join-prime in $\mathscr{U}(P)$. Thus, ψ is well-defined. Moreover ψ is clearly 1-1. Next, since P is finite, every join-prime element of $\mathscr{U}(P)$ has the form $\uparrow p$ for some $p \in P$, which means that ψ is onto. To show that ψ is an order-isomorphism, it remains to observe the following easy
Fact: For each $p, q \in P$, the following three conditions are equivalent:

- $p \leqslant q$.
- $\uparrow q \subseteq \uparrow p$.
- $\downarrow p \subseteq \downarrow q$.

Duality between finite distributive lattices and finite posets

Theorem: P is isomorphic to $P^{*}{ }_{*}$.
Proof (Sketch). Define $\psi: P \rightarrow P^{*}{ }_{*}$ by $\psi(p)=\uparrow p$. As we saw, $\uparrow p$ is join-prime in $\mathscr{U}(P)$. Thus, ψ is well-defined. Moreover ψ is clearly 1-1. Next, since P is finite, every join-prime element of $\mathscr{U}(P)$ has the form $\uparrow p$ for some $p \in P$, which means that ψ is onto. To show that ψ is an order-isomorphism, it remains to observe the following easy
Fact: For each $p, q \in P$, the following three conditions are equivalent:

- $p \leqslant q$.
- $\uparrow q \subseteq \uparrow p$.
- $\downarrow p \subseteq \downarrow q$.

These theorems put together give us the Birkhoff duality between finite distributive lattices and finite posets.

Example

We will demonstrate the Birkhoff duality on the example given earlier in the lecture.

Example

We will demonstrate the Birkhoff duality on the example given earlier in the lecture.

Example

We will demonstrate the Birkhoff duality on the example given earlier in the lecture.

Example

We will demonstrate the Birkhoff duality on the example given earlier in the lecture.

Example

We will demonstrate the Birkhoff duality on the example given earlier in the lecture.

Example

We will demonstrate the Birkhoff duality on the example given earlier in the lecture.

Example

We will demonstrate the Birkhoff duality on the example given earlier in the lecture.

Example

We will demonstrate the Birkhoff duality on the example given earlier in the lecture.

$$
L_{*}=(\mathfrak{J}(L), \geqslant)
$$

$$
L_{*}{ }^{*}=\mathscr{U}\left(L_{*}\right)
$$

Example

We will demonstrate the Birkhoff duality on the example given earlier in the lecture.

$$
L_{*}=(\mathfrak{J}(L), \geqslant)
$$

$$
L_{*}{ }^{*}=\mathscr{U}\left(L_{*}\right)
$$

Example

We will demonstrate the Birkhoff duality on the example given earlier in the lecture.

$$
L_{*}=(\mathfrak{J}(L), \geqslant)
$$

$$
L_{*}{ }^{*}=\mathscr{U}\left(L_{*}\right)
$$

Example

We will demonstrate the Birkhoff duality on the example given earlier in the lecture.

$$
L_{*}=(\mathfrak{J}(L), \geqslant)
$$

$$
L_{*}{ }^{*}=\mathscr{U}\left(L_{*}\right)
$$

Example

We will demonstrate the Birkhoff duality on the example given earlier in the lecture.

$$
L_{*}=(\mathfrak{J}(L), \geqslant)
$$

$$
L_{*}{ }^{*}=\mathscr{U}\left(L_{*}\right)
$$

Example

We will demonstrate the Birkhoff duality on the example given earlier in the lecture.

$$
L_{*}=(\mathfrak{J}(L), \geqslant)
$$

$$
L_{*}{ }^{*}=\mathscr{U}\left(L_{*}\right)
$$

Example

We will demonstrate the Birkhoff duality on the example given earlier in the lecture.

Example

We will demonstrate the Birkhoff duality on the example given earlier in the lecture.

Duality between finite distributive lattices and finite posets

Note that instead of working with $\mathfrak{J}(L)$ and $\mathscr{U}(P)$, we could alternatively work with $\mathfrak{M}(L)$ and $\mathscr{D}(P)$. The result would be the same!

Duality between finite distributive lattices and finite posets

Note that instead of working with $\mathfrak{J}(L)$ and $\mathscr{U}(P)$, we could alternatively work with $\mathfrak{M}(L)$ and $\mathscr{D}(P)$. The result would be the same!

One of the consequences of the Birkhoff duality is the following representation theorem for finite distributive lattices:

Duality between finite distributive lattices and finite posets

Note that instead of working with $\mathfrak{J}(L)$ and $\mathscr{U}(P)$, we could alternatively work with $\mathfrak{M}(L)$ and $\mathscr{D}(P)$. The result would be the same!

One of the consequences of the Birkhoff duality is the following representation theorem for finite distributive lattices:

Representation Theorem for Finite Distributive Lattices: Every finite distributive lattice can be represented as the lattice of upsets (downsets) of some poset.

Duality between finite distributive lattices and finite posets

Note that instead of working with $\mathfrak{J}(L)$ and $\mathscr{U}(P)$, we could alternatively work with $\mathfrak{M}(L)$ and $\mathscr{D}(P)$. The result would be the same!

One of the consequences of the Birkhoff duality is the following representation theorem for finite distributive lattices:

Representation Theorem for Finite Distributive Lattices: Every finite distributive lattice can be represented as the lattice of upsets (downsets) of some poset.

It is our goal to extend the Birkhoff duality to all distributive lattices.

The infinite case

So far we have dealt only with finite distributive lattices.

The infinite case

So far we have dealt only with finite distributive lattices. The next natural question is whether the Brikhoff duality can be extended to infinite objects.

The infinite case

So far we have dealt only with finite distributive lattices. The next natural question is whether the Brikhoff duality can be extended to infinite objects.
It would be nice if the Birkhoff duality had a straightforward generalization to the infinite case.

The infinite case

So far we have dealt only with finite distributive lattices. The next natural question is whether the Brikhoff duality can be extended to infinite objects.
It would be nice if the Birkhoff duality had a straightforward generalization to the infinite case. Unfortunately, this is not the case.

The infinite case

So far we have dealt only with finite distributive lattices. The next natural question is whether the Brikhoff duality can be extended to infinite objects.
It would be nice if the Birkhoff duality had a straightforward generalization to the infinite case. Unfortunately, this is not the case. Why?

The infinite case

So far we have dealt only with finite distributive lattices. The next natural question is whether the Brikhoff duality can be extended to infinite objects.
It would be nice if the Birkhoff duality had a straightforward generalization to the infinite case. Unfortunately, this is not the case. Why? Because we may not have enough prime elements any longer.

The infinite case

So far we have dealt only with finite distributive lattices. The next natural question is whether the Brikhoff duality can be extended to infinite objects.
It would be nice if the Birkhoff duality had a straightforward generalization to the infinite case. Unfortunately, this is not the case. Why? Because we may not have enough prime elements any longer. In fact, there are infinite lattices with no prime elements whatsoever!

The infinite case

So far we have dealt only with finite distributive lattices. The next natural question is whether the Brikhoff duality can be extended to infinite objects.
It would be nice if the Birkhoff duality had a straightforward generalization to the infinite case. Unfortunately, this is not the case. Why? Because we may not have enough prime elements any longer. In fact, there are infinite lattices with no prime elements whatsoever!

Example: Consider the lattice of cofinite subsets of a given infinite set S.

The infinite case

So far we have dealt only with finite distributive lattices. The next natural question is whether the Brikhoff duality can be extended to infinite objects.
It would be nice if the Birkhoff duality had a straightforward generalization to the infinite case. Unfortunately, this is not the case. Why? Because we may not have enough prime elements any longer. In fact, there are infinite lattices with no prime elements whatsoever!

Example: Consider the lattice of cofinite subsets of a given infinite set S. Each cofinite subset A of S decomposes into a join of two strictly smaller cofinite subsets.

The infinite case

So far we have dealt only with finite distributive lattices. The next natural question is whether the Brikhoff duality can be extended to infinite objects.

It would be nice if the Birkhoff duality had a straightforward generalization to the infinite case. Unfortunately, this is not the case. Why? Because we may not have enough prime elements any longer. In fact, there are infinite lattices with no prime elements whatsoever!

Example: Consider the lattice of cofinite subsets of a given infinite set S. Each cofinite subset A of S decomposes into a join of two strictly smaller cofinite subsets. For example, take any two $x, y \in A$.

The infinite case

So far we have dealt only with finite distributive lattices. The next natural question is whether the Brikhoff duality can be extended to infinite objects.
It would be nice if the Birkhoff duality had a straightforward generalization to the infinite case. Unfortunately, this is not the case. Why? Because we may not have enough prime elements any longer. In fact, there are infinite lattices with no prime elements whatsoever!

Example: Consider the lattice of cofinite subsets of a given infinite set S. Each cofinite subset A of S decomposes into a join of two strictly smaller cofinite subsets. For example, take any two $x, y \in A$. Then

$$
A=(A-\{x\}) \cup(A-\{y\})
$$

The infinite case

So far we have dealt only with finite distributive lattices. The next natural question is whether the Brikhoff duality can be extended to infinite objects.
It would be nice if the Birkhoff duality had a straightforward generalization to the infinite case. Unfortunately, this is not the case. Why? Because we may not have enough prime elements any longer. In fact, there are infinite lattices with no prime elements whatsoever!

Example: Consider the lattice of cofinite subsets of a given infinite set S. Each cofinite subset A of S decomposes into a join of two strictly smaller cofinite subsets. For example, take any two $x, y \in A$. Then

$$
A=(A-\{x\}) \cup(A-\{y\})
$$

Thus this lattice does not have any join-prime elements.

Filters and ideals

What shall we do?

Filters and ideals

What shall we do? At this point we need to introduce a new concept of prime filter and its dual concept of prime ideal.

Filters and ideals

What shall we do? At this point we need to introduce a new concept of prime filter and its dual concept of prime ideal.

As we will see, in the finite case prime filters are in 1-1 correspondence with join-prime elements and prime ideals are in 1-1 correspondence with meet-prime elements.

Filters and ideals

What shall we do? At this point we need to introduce a new concept of prime filter and its dual concept of prime ideal.

As we will see, in the finite case prime filters are in 1-1 correspondence with join-prime elements and prime ideals are in 1-1 correspondence with meet-prime elements. Luckily for us, they will turn out to be the right generalization of prime elements when we move to the infinite case.

Filters and ideals

What shall we do? At this point we need to introduce a new concept of prime filter and its dual concept of prime ideal.

As we will see, in the finite case prime filters are in 1-1 correspondence with join-prime elements and prime ideals are in 1-1 correspondence with meet-prime elements. Luckily for us, they will turn out to be the right generalization of prime elements when we move to the infinite case.

To introduce prime filters and prime ideals, we first need to give a brief account of filters and ideals of a lattice.

The infinite case

Let L be a lattice. A nonempty subset F of L is called a filter of L if the following two conditions are satisfied:
(1) From $a \in F$ and $a \leqslant b$ it follows that $b \in F$.
(2) If $a, b \in F$, then $a \wedge b \in F$.

The infinite case

Let L be a lattice. A nonempty subset F of L is called a filter of L if the following two conditions are satisfied:
(1) From $a \in F$ and $a \leqslant b$ it follows that $b \in F$.
(2) If $a, b \in F$, then $a \wedge b \in F$.

Equivalently, $F \neq \varnothing$ is a filter of L if for each $a, b \in L$ we have $a, b \in F$ iff $a \wedge b \in F$.

The infinite case

Let L be a lattice. A nonempty subset F of L is called a filter of L if the following two conditions are satisfied:
(1) From $a \in F$ and $a \leqslant b$ it follows that $b \in F$.
(2) If $a, b \in F$, then $a \wedge b \in F$.

Equivalently, $F \neq \varnothing$ is a filter of L if for each $a, b \in L$ we have $a, b \in F$ iff $a \wedge b \in F$.

The dual notion of a filter is that of an ideal.

The infinite case

Let L be a lattice. A nonempty subset F of L is called a filter of L if the following two conditions are satisfied:
(1) From $a \in F$ and $a \leqslant b$ it follows that $b \in F$.
(2) If $a, b \in F$, then $a \wedge b \in F$.

Equivalently, $F \neq \varnothing$ is a filter of L if for each $a, b \in L$ we have $a, b \in F$ iff $a \wedge b \in F$.

The dual notion of a filter is that of an ideal.
A nonempty subset I of L is called an ideal of L if:
(1) From $a \in I$ and $b \leqslant a$ it follows that $b \in I$.
(2) If $a, b \in I$, then $a \vee b \in I$.

The infinite case

Let L be a lattice. A nonempty subset F of L is called a filter of L if the following two conditions are satisfied:
(1) From $a \in F$ and $a \leqslant b$ it follows that $b \in F$.
(2) If $a, b \in F$, then $a \wedge b \in F$.

Equivalently, $F \neq \varnothing$ is a filter of L if for each $a, b \in L$ we have $a, b \in F$ iff $a \wedge b \in F$.

The dual notion of a filter is that of an ideal.
A nonempty subset I of L is called an ideal of L if:
(1) From $a \in I$ and $b \leqslant a$ it follows that $b \in I$.
(2) If $a, b \in I$, then $a \vee b \in I$.

Equivalently, $I \neq \varnothing$ is an ideal of L if for each $a, b \in L$ we have $a, b \in I$ iff $a \vee b \in I$.

Filters and ideals

Example: For $a \in L$, the upset $\uparrow a$ is a filter and the downset $\downarrow a$ is an ideal of L, called the principal filter and ideal of L, respectively.

Filters and ideals

Example: For $a \in L$, the upset $\uparrow a$ is a filter and the downset $\downarrow a$ is an ideal of L, called the principal filter and ideal of L, respectively.

In a finite lattice, the converse is also true; that is, every filter (ideal) is principal.

Filters and ideals

Example: For $a \in L$, the upset $\uparrow a$ is a filter and the downset $\downarrow a$ is an ideal of L, called the principal filter and ideal of L, respectively.

In a finite lattice, the converse is also true; that is, every filter (ideal) is principal.

But there are infinite lattices, where not every filter (ideal) is principal.

Filters and ideals

Example: For $a \in L$, the upset $\uparrow a$ is a filter and the downset $\downarrow a$ is an ideal of L, called the principal filter and ideal of L, respectively.

In a finite lattice, the converse is also true; that is, every filter (ideal) is principal.

But there are infinite lattices, where not every filter (ideal) is principal.

Example: In $[0,1]$ we have $\left(\frac{1}{2}, 1\right]$ is a non-principal filter and
$\left[0, \frac{1}{2}\right)$ is a non-principal ideal.

Prime filters and prime ideals

Prime filters and prime ideals

Let L be a lattice and $F \neq L$ be a filter of L. We call F a prime filter of L if for all $a, b \in L$ we have:

$$
a \vee b \in F \Rightarrow a \in F \text { or } b \in F .
$$

Prime filters and prime ideals

Let L be a lattice and $F \neq L$ be a filter of L. We call F a prime filter of L if for all $a, b \in L$ we have:

$$
a \vee b \in F \Rightarrow a \in F \text { or } b \in F
$$

Let $\mathscr{X}(L)$ denote the set of prime filters of L.

Prime filters and prime ideals

Let L be a lattice and $F \neq L$ be a filter of L. We call F a prime filter of L if for all $a, b \in L$ we have:

$$
a \vee b \in F \Rightarrow a \in F \text { or } b \in F
$$

Let $\mathscr{X}(L)$ denote the set of prime filters of L.
Dually, we call an ideal $I \neq L$ of L a prime ideal of L if for all $a, b \in L$ we have:

$$
a \wedge b \in I \Rightarrow a \in I \text { or } b \in I
$$

Prime filters and prime ideals

Let L be a lattice and $F \neq L$ be a filter of L. We call F a prime filter of L if for all $a, b \in L$ we have:

$$
a \vee b \in F \Rightarrow a \in F \text { or } b \in F
$$

Let $\mathscr{X}(L)$ denote the set of prime filters of L.
Dually, we call an ideal $I \neq L$ of L a prime ideal of L if for all $a, b \in L$ we have:

$$
a \wedge b \in I \Rightarrow a \in I \text { or } b \in I
$$

Let $\mathscr{Y}(L)$ denote the set of prime ideals of L.

Prime filters and prime ideals

Let L be a lattice and $F \neq L$ be a filter of L. We call F a prime filter of L if for all $a, b \in L$ we have:

$$
a \vee b \in F \Rightarrow a \in F \text { or } b \in F
$$

Let $\mathscr{X}(L)$ denote the set of prime filters of L.
Dually, we call an ideal $I \neq L$ of L a prime ideal of L if for all $a, b \in L$ we have:

$$
a \wedge b \in I \Rightarrow a \in I \text { or } b \in I
$$

Let $\mathscr{Y}(L)$ denote the set of prime ideals of L.
Thus, a filter F is prime iff its complement $I=L-F$ is an ideal, which is then a prime ideal.

Prime filters and prime ideals

Let L be a lattice and $F \neq L$ be a filter of L. We call F a prime filter of L if for all $a, b \in L$ we have:

$$
a \vee b \in F \Rightarrow a \in F \text { or } b \in F
$$

Let $\mathscr{X}(L)$ denote the set of prime filters of L.
Dually, we call an ideal $I \neq L$ of L a prime ideal of L if for all $a, b \in L$ we have:

$$
a \wedge b \in I \Rightarrow a \in I \text { or } b \in I
$$

Let $\mathscr{Y}(L)$ denote the set of prime ideals of L.
Thus, a filter F is prime iff its complement $I=L-F$ is an ideal, which is then a prime ideal.
Similarly, an ideal I is prime iff its complement $F=L-I$ is a filter, which is then a prime filter.

Prime filters and prime ideals

Examples:

(1) In a linear order, every upset is a prime filter, and every downset is a prime ideal.

Prime filters and prime ideals

Examples:

(1) In a linear order, every upset is a prime filter, and every downset is a prime ideal.
(2) Let $a \in L$. Then a is join-prime iff the principal filter $\uparrow a$ is a prime filter, and a is meet-prime iff the principal ideal $\downarrow a$ is a prime ideal.

Prime filters and prime ideals

Examples:

(1) In a linear order, every upset is a prime filter, and every downset is a prime ideal.
(2) Let $a \in L$. Then a is join-prime iff the principal filter $\uparrow a$ is a prime filter, and a is meet-prime iff the principal ideal $\downarrow a$ is a prime ideal.

Now we consider the map $\mathfrak{J}(L) \rightarrow \mathscr{X}(L)$ given by $a \mapsto \uparrow a$.

Prime filters and prime ideals

Examples:

(1) In a linear order, every upset is a prime filter, and every downset is a prime ideal.
(2) Let $a \in L$. Then a is join-prime iff the principal filter $\uparrow a$ is a prime filter, and a is meet-prime iff the principal ideal $\downarrow a$ is a prime ideal.

Now we consider the map $\mathfrak{J}(L) \rightarrow \mathscr{X}(L)$ given by $a \mapsto \uparrow a$.

Dually, we consider the map $\mathfrak{M}(L) \rightarrow \mathscr{Y}(L)$ given by $a \mapsto \downarrow a$.

Prime filters and prime ideals

Since every filter of a finite lattice L is principal, from the above we obtain:

Prime filters and prime ideals

Since every filter of a finite lattice L is principal, from the above we obtain:

Theorem: In a finite lattice the map $a \mapsto \uparrow a$ establishes order-isomorphism between the posets $(\mathfrak{J}(L), \geqslant)$ and $(\mathscr{X}(L), \subseteq)$.

Prime filters and prime ideals

Since every filter of a finite lattice L is principal, from the above we obtain:

Theorem: In a finite lattice the map $a \mapsto \uparrow a$ establishes order-isomorphism between the posets $(\mathfrak{J}(L), \geqslant)$ and $(\mathscr{X}(L), \subseteq)$.

Similarly, the map $a \mapsto \downarrow a$ establishes order-isomorphism between the posets $(\mathfrak{M}(L), \leqslant)$ and $(\mathscr{Y}(L), \subseteq)$.

Prime filters and prime ideals

Since every filter of a finite lattice L is principal, from the above we obtain:

Theorem: In a finite lattice the map $a \mapsto \uparrow a$ establishes order-isomorphism between the posets $(\mathfrak{J}(L), \geqslant)$ and $(\mathscr{X}(L), \subseteq)$.

Similarly, the map $a \mapsto \downarrow a$ establishes order-isomorphism between the posets $(\mathfrak{M}(L), \leqslant)$ and $(\mathscr{Y}(L), \subseteq)$.

Consequently, if L is a finite lattice, then there is an order-isomorphism between the posets $(\mathfrak{J}(L), \leqslant)$ and $(\mathfrak{M}(L), \leqslant)$.

From join-primes to prime filters

As we already saw, in the infinite case we may not have enough join-prime elements.

From join-primes to prime filters

As we already saw, in the infinite case we may not have enough join-prime elements. In fact, we may have none!

From join-primes to prime filters

As we already saw, in the infinite case we may not have enough join-prime elements. In fact, we may have none! To give a representation of infinite latices, we will work with prime filters instead.

From join-primes to prime filters

As we already saw, in the infinite case we may not have enough join-prime elements. In fact, we may have none! To give a representation of infinite latices, we will work with prime filters instead.

Let L be a distributive lattice.

From join-primes to prime filters

As we already saw, in the infinite case we may not have enough join-prime elements. In fact, we may have none! To give a representation of infinite latices, we will work with prime filters instead.

Let L be a distributive lattice. We may as well assume that L is bounded.

From join-primes to prime filters

As we already saw, in the infinite case we may not have enough join-prime elements. In fact, we may have none! To give a representation of infinite latices, we will work with prime filters instead.

Let L be a distributive lattice. We may as well assume that L is bounded. (If not, we can always adjoin new top and bottom to L.)

From join-primes to prime filters

As we already saw, in the infinite case we may not have enough join-prime elements. In fact, we may have none! To give a representation of infinite latices, we will work with prime filters instead.

Let L be a distributive lattice. We may as well assume that L is bounded. (If not, we can always adjoin new top and bottom to L.)

We define $\phi: L \rightarrow \mathscr{P}(\mathscr{X}(L))$ by

From join-primes to prime filters

As we already saw, in the infinite case we may not have enough join-prime elements. In fact, we may have none! To give a representation of infinite latices, we will work with prime filters instead.

Let L be a distributive lattice. We may as well assume that L is bounded. (If not, we can always adjoin new top and bottom to L.)

We define $\phi: L \rightarrow \mathscr{P}(\mathscr{X}(L))$ by

$$
\phi(a)=\{x \in \mathscr{X}(L) \mid a \in x\}
$$

Representation of distributive lattices

Lemma:
(1) $\phi(0)=\emptyset$

Representation of distributive lattices

Lemma:

(1) $\phi(0)=\emptyset$
(2) $\phi(1)=\mathscr{X}(L)$

Representation of distributive lattices

Lemma:

(1) $\phi(0)=\emptyset$
(2) $\phi(1)=\mathscr{X}(L)$
(3) $\phi(a \wedge b)=\phi(a) \cap \phi(b)$

Representation of distributive lattices

Lemma:

(1) $\phi(0)=\emptyset$
(2) $\phi(1)=\mathscr{X}(L)$
(3) $\phi(a \wedge b)=\phi(a) \cap \phi(b)$
(4) $\phi(a \vee b)=\phi(a) \cup \phi(b)$

Representation of distributive lattices

Lemma:

(1) $\phi(0)=\emptyset$
(2) $\phi(1)=\mathscr{X}(L)$
(3) $\phi(a \wedge b)=\phi(a) \cap \phi(b)$
(4) $\phi(a \vee b)=\phi(a) \cup \phi(b)$

Proof: Since 0 belongs to no prime filter and 1 belongs to every prime filter, we obtain $\phi(0)=\emptyset$ and $\phi(1)=\mathscr{X}(L)$.

Representation of distributive lattices

Lemma:

(1) $\phi(0)=\emptyset$
(2) $\phi(1)=\mathscr{X}(L)$
(3) $\phi(a \wedge b)=\phi(a) \cap \phi(b)$
(4) $\phi(a \vee b)=\phi(a) \cup \phi(b)$

Proof: Since 0 belongs to no prime filter and 1 belongs to every prime filter, we obtain $\phi(0)=\emptyset$ and $\phi(1)=\mathscr{X}(L)$. Moreover

Representation of distributive lattices

Lemma:

(1) $\phi(0)=\emptyset$
(2) $\phi(1)=\mathscr{X}(L)$
(3) $\phi(a \wedge b)=\phi(a) \cap \phi(b)$
(4) $\phi(a \vee b)=\phi(a) \cup \phi(b)$

Proof: Since 0 belongs to no prime filter and 1 belongs to every prime filter, we obtain $\phi(0)=\emptyset$ and $\phi(1)=\mathscr{X}(L)$. Moreover

$$
x \in \phi(a \wedge b)
$$

Representation of distributive lattices

Lemma:

(1) $\phi(0)=\emptyset$
(2) $\phi(1)=\mathscr{X}(L)$
(3) $\phi(a \wedge b)=\phi(a) \cap \phi(b)$
(4) $\phi(a \vee b)=\phi(a) \cup \phi(b)$

Proof: Since 0 belongs to no prime filter and 1 belongs to every prime filter, we obtain $\phi(0)=\emptyset$ and $\phi(1)=\mathscr{X}(L)$. Moreover

$$
\begin{aligned}
& x \in \phi(a \wedge b) \text { iff } \\
& a \wedge b \in x
\end{aligned}
$$

Representation of distributive lattices

Lemma:

(1) $\phi(0)=\emptyset$
(2) $\phi(1)=\mathscr{X}(L)$
(3) $\phi(a \wedge b)=\phi(a) \cap \phi(b)$
(4) $\phi(a \vee b)=\phi(a) \cup \phi(b)$

Proof: Since 0 belongs to no prime filter and 1 belongs to every prime filter, we obtain $\phi(0)=\emptyset$ and $\phi(1)=\mathscr{X}(L)$. Moreover

```
x\in\phi(a\wedgeb) iff
a^b\inx iff
a\inx and b\inx
```


Representation of distributive lattices

Lemma:

(1) $\phi(0)=\emptyset$
(2) $\phi(1)=\mathscr{X}(L)$
(3) $\phi(a \wedge b)=\phi(a) \cap \phi(b)$
(4) $\phi(a \vee b)=\phi(a) \cup \phi(b)$

Proof: Since 0 belongs to no prime filter and 1 belongs to every prime filter, we obtain $\phi(0)=\emptyset$ and $\phi(1)=\mathscr{X}(L)$. Moreover

```
x\in\phi(a\wedgeb) iff
a\wedgeb\inx iff
a\inx and b\inx iff
x\in\phi(a) and x\in\phi(b)
```


Representation of distributive lattices

Lemma:

(1) $\phi(0)=\emptyset$
(2) $\phi(1)=\mathscr{X}(L)$
(3) $\phi(a \wedge b)=\phi(a) \cap \phi(b)$
(4) $\phi(a \vee b)=\phi(a) \cup \phi(b)$

Proof: Since 0 belongs to no prime filter and 1 belongs to every prime filter, we obtain $\phi(0)=\emptyset$ and $\phi(1)=\mathscr{X}(L)$. Moreover

```
x\in\phi(a\wedgeb) iff
a\wedgeb\inx iff
a\inx and b\inx iff
x\in\phi(a) and }x\in\phi(b) iff
x\in\phi(a)\cap\phi(b)
```


Representation of distributive lattices

Lemma:

(1) $\phi(0)=\emptyset$
(2) $\phi(1)=\mathscr{X}(L)$
(3) $\phi(a \wedge b)=\phi(a) \cap \phi(b)$
(4) $\phi(a \vee b)=\phi(a) \cup \phi(b)$

Proof: Since 0 belongs to no prime filter and 1 belongs to every prime filter, we obtain $\phi(0)=\emptyset$ and $\phi(1)=\mathscr{X}(L)$. Moreover

```
x\in\phi(a\wedgeb) iff
a\wedgeb\inx iff
a\inx and b\inx iff
x\in\phi(a) and }x\in\phi(b) iff
x\in\phi(a)\cap\phi(b)
Thus }\phi(a\wedgeb)=\phi(a)\cap\phi(b)
```


Representation of distributive lattices

Furthermore, $x \in \phi(a \vee b)$ iff $a \vee b \in x$.

Representation of distributive lattices

Furthermore, $x \in \phi(a \vee b)$ iff $a \vee b \in x$.
Since x is prime, this is equivalent to $a \in x$ or $b \in x$

Representation of distributive lattices

Furthermore, $x \in \phi(a \vee b)$ iff $a \vee b \in x$.

Since x is prime, this is equivalent to $a \in x$ or $b \in x$
which is equivalent to $x \in \phi(a)$ or $x \in \phi(b)$

Representation of distributive lattices

Furthermore, $x \in \phi(a \vee b)$ iff $a \vee b \in x$.

Since x is prime, this is equivalent to $a \in x$ or $b \in x$
which is equivalent to $x \in \phi(a)$ or $x \in \phi(b)$
which happens iff $x \in \phi(a) \cup \phi(b)$.

Representation of distributive lattices

Furthermore, $x \in \phi(a \vee b)$ iff $a \vee b \in x$.

Since x is prime, this is equivalent to $a \in x$ or $b \in x$
which is equivalent to $x \in \phi(a)$ or $x \in \phi(b)$
which happens iff $x \in \phi(a) \cup \phi(b)$.
Thus $\phi(a \vee b)=\phi(a) \cup \phi(b)$.

Representation of distributive lattices

Furthermore, $x \in \phi(a \vee b)$ iff $a \vee b \in x$.

Since x is prime, this is equivalent to $a \in x$ or $b \in x$
which is equivalent to $x \in \phi(a)$ or $x \in \phi(b)$
which happens iff $x \in \phi(a) \cup \phi(b)$.
Thus $\phi(a \vee b)=\phi(a) \cup \phi(b)$.

Remark: Note that $\phi(a \vee b)=\phi(a) \cup \phi(b)$ is the only place in the lemma where we require our filters to be prime!

Representation of distributive lattices

Therefore, ϕ is a lattice homomorphism from L into $\mathscr{P}(\mathscr{X}(L))$.

Representation of distributive lattices

Therefore, ϕ is a lattice homomorphism from L into $\mathscr{P}(\mathscr{X}(L))$. But we can say more.

Representation of distributive lattices

Therefore, ϕ is a lattice homomorphism from L into $\mathscr{P}(\mathscr{X}(L))$. But we can say more.

Lemma: $\phi(a) \in \mathscr{U}(\mathscr{X}(L))$ for each $a \in L$.

Representation of distributive lattices

Therefore, ϕ is a lattice homomorphism from L into $\mathscr{P}(\mathscr{X}(L))$. But we can say more.

Lemma: $\phi(a) \in \mathscr{U}(\mathscr{X}(L))$ for each $a \in L$.
Proof: Let $x \in \phi(a)$ and $x \subseteq y$.

Representation of distributive lattices

Therefore, ϕ is a lattice homomorphism from L into $\mathscr{P}(\mathscr{X}(L))$. But we can say more.

Lemma: $\phi(a) \in \mathscr{U}(\mathscr{X}(L))$ for each $a \in L$.
Proof: Let $x \in \phi(a)$ and $x \subseteq y$. Then $a \in x$, and as $x \subseteq y$, we obtain $a \in y$.

Representation of distributive lattices

Therefore, ϕ is a lattice homomorphism from L into $\mathscr{P}(\mathscr{X}(L))$. But we can say more.

Lemma: $\phi(a) \in \mathscr{U}(\mathscr{X}(L))$ for each $a \in L$.
Proof: Let $x \in \phi(a)$ and $x \subseteq y$. Then $a \in x$, and as $x \subseteq y$, we obtain $a \in y$. Therefore $y \in \phi(a)$, and so $\phi(a) \in \mathscr{U}(\mathscr{X}(L))$.

Representation of distributive lattices

Therefore, ϕ is a lattice homomorphism from L into $\mathscr{P}(\mathscr{X}(L))$. But we can say more.

Lemma: $\phi(a) \in \mathscr{U}(\mathscr{X}(L))$ for each $a \in L$.
Proof: Let $x \in \phi(a)$ and $x \subseteq y$. Then $a \in x$, and as $x \subseteq y$, we obtain $a \in y$. Therefore $y \in \phi(a)$, and so $\phi(a) \in \mathscr{U}(\mathscr{X}(L))$.

Therefore, ϕ is a lattice homomorphism from L into $\mathscr{U}(\mathscr{X}(L))$.

Representation of distributive lattices

Therefore, ϕ is a lattice homomorphism from L into $\mathscr{P}(\mathscr{X}(L))$. But we can say more.

Lemma: $\phi(a) \in \mathscr{U}(\mathscr{X}(L))$ for each $a \in L$.
Proof: Let $x \in \phi(a)$ and $x \subseteq y$. Then $a \in x$, and as $x \subseteq y$, we obtain $a \in y$. Therefore $y \in \phi(a)$, and so $\phi(a) \in \mathscr{U}(\mathscr{X}(L))$.

Therefore, ϕ is a lattice homomorphism from L into $\mathscr{U}(\mathscr{X}(L))$.
Our main concern is whether ϕ is 1-1.

Representation of distributive lattices

Therefore, ϕ is a lattice homomorphism from L into $\mathscr{P}(\mathscr{X}(L))$. But we can say more.

Lemma: $\phi(a) \in \mathscr{U}(\mathscr{X}(L))$ for each $a \in L$.
Proof: Let $x \in \phi(a)$ and $x \subseteq y$. Then $a \in x$, and as $x \subseteq y$, we obtain $a \in y$. Therefore $y \in \phi(a)$, and so $\phi(a) \in \mathscr{U}(\mathscr{X}(L))$.

Therefore, ϕ is a lattice homomorphism from L into $\mathscr{U}(\mathscr{X}(L))$.
Our main concern is whether ϕ is 1-1. Luckily it is.

Representation of distributive lattices

Therefore, ϕ is a lattice homomorphism from L into $\mathscr{P}(\mathscr{X}(L))$. But we can say more.

Lemma: $\phi(a) \in \mathscr{U}(\mathscr{X}(L))$ for each $a \in L$.
Proof: Let $x \in \phi(a)$ and $x \subseteq y$. Then $a \in x$, and as $x \subseteq y$, we obtain $a \in y$. Therefore $y \in \phi(a)$, and so $\phi(a) \in \mathscr{U}(\mathscr{X}(L))$.

Therefore, ϕ is a lattice homomorphism from L into $\mathscr{U}(\mathscr{X}(L))$.
Our main concern is whether ϕ is 1-1. Luckily it is. But it requires an important lemma about the behavior of prime filters, known as the Stone lemma.

Representation of distributive lattices

Therefore, ϕ is a lattice homomorphism from L into $\mathscr{P}(\mathscr{X}(L))$. But we can say more.

Lemma: $\phi(a) \in \mathscr{U}(\mathscr{X}(L))$ for each $a \in L$.
Proof: Let $x \in \phi(a)$ and $x \subseteq y$. Then $a \in x$, and as $x \subseteq y$, we obtain $a \in y$. Therefore $y \in \phi(a)$, and so $\phi(a) \in \mathscr{U}(\mathscr{X}(L))$.

Therefore, ϕ is a lattice homomorphism from L into $\mathscr{U}(\mathscr{X}(L))$.
Our main concern is whether ϕ is 1-1. Luckily it is. But it requires an important lemma about the behavior of prime filters, known as the Stone lemma. We will only state it and skip the proof.

Stone's lemma

Stone's Lemma: Let L be a bounded distributive lattice, F be a filter of L and I be an ideal of L.

Stone's lemma

Stone's Lemma: Let L be a bounded distributive lattice, F be a filter of L and I be an ideal of L. If F and I are disjoint

Stone's lemma

Stone's Lemma: Let L be a bounded distributive lattice, F be a filter of L and I be an ideal of L. If F and I are disjoint then there exists a prime filter x of L containing F and disjoint from I.

Representation of distributive lattices

Having the Stone lemma available, it is easy to show that ϕ is 1-1.

Representation of distributive lattices

Having the Stone lemma available, it is easy to show that ϕ is 1-1.

Lemma: $\phi: L \rightarrow \mathscr{U}(\mathscr{X}(L))$ is 1-1.

Representation of distributive lattices

Having the Stone lemma available, it is easy to show that ϕ is 1-1.

Lemma: $\phi: L \rightarrow \mathscr{U}(\mathscr{X}(L))$ is 1-1.
Proof: Let $a, b \in L$ and $a \neq b$.

Representation of distributive lattices

Having the Stone lemma available, it is easy to show that ϕ is 1-1.

Lemma: $\phi: L \rightarrow \mathscr{U}(\mathscr{X}(L))$ is 1-1.
Proof: Let $a, b \in L$ and $a \neq b$. Then either $a \nless b$ or $b \nless a$.

Representation of distributive lattices

Having the Stone lemma available, it is easy to show that ϕ is 1-1.

Lemma: $\phi: L \rightarrow \mathscr{U}(\mathscr{X}(L))$ is 1-1.
Proof: Let $a, b \in L$ and $a \neq b$. Then either $a \nless b$ or $b \nless a$. Without loss of generality we may assume that $a \nless b$.

Representation of distributive lattices

Having the Stone lemma available, it is easy to show that ϕ is 1-1.

Lemma: $\phi: L \rightarrow \mathscr{U}(\mathscr{X}(L))$ is 1-1.
Proof: Let $a, b \in L$ and $a \neq b$. Then either $a \nless b$ or $b \nless a$. Without loss of generality we may assume that $a \nless b$.
Consequently, the filter $\uparrow a$ is disjoint from the ideal $\downarrow b$.

Representation of distributive lattices

Having the Stone lemma available, it is easy to show that ϕ is 1-1.

Lemma: $\phi: L \rightarrow \mathscr{U}(\mathscr{X}(L))$ is 1-1.
Proof: Let $a, b \in L$ and $a \neq b$. Then either $a \nless b$ or $b \nless a$. Without loss of generality we may assume that $a \nless b$.
Consequently, the filter $\uparrow a$ is disjoint from the ideal $\downarrow b$. By Stone's Lemma, there exists $x \in \mathscr{X}(L)$ such that $\uparrow a \subseteq x$ and $x \cap \downarrow b=\emptyset$.

Representation of distributive lattices

Having the Stone lemma available, it is easy to show that ϕ is 1-1.

Lemma: $\phi: L \rightarrow \mathscr{U}(\mathscr{X}(L))$ is 1-1.
Proof: Let $a, b \in L$ and $a \neq b$. Then either $a \nless b$ or $b \nless a$. Without loss of generality we may assume that $a \nless b$. Consequently, the filter $\uparrow a$ is disjoint from the ideal $\downarrow b$. By Stone's Lemma, there exists $x \in \mathscr{X}(L)$ such that $\uparrow a \subseteq x$ and $x \cap \downarrow b=\emptyset$. Therefore $a \in x$ and $b \notin x$.

Representation of distributive lattices

Having the Stone lemma available, it is easy to show that ϕ is 1-1.

Lemma: $\phi: L \rightarrow \mathscr{U}(\mathscr{X}(L))$ is 1-1.
Proof: Let $a, b \in L$ and $a \neq b$. Then either $a \nless b$ or $b \nless a$. Without loss of generality we may assume that $a \nless b$.
Consequently, the filter $\uparrow a$ is disjoint from the ideal $\downarrow b$. By Stone's Lemma, there exists $x \in \mathscr{X}(L)$ such that $\uparrow a \subseteq x$ and $x \cap \downarrow b=\emptyset$. Therefore $a \in x$ and $b \notin x$. Thus $x \in \phi(a)$ and $x \notin \phi(b)$

Representation of distributive lattices

Having the Stone lemma available, it is easy to show that ϕ is 1-1.

Lemma: $\phi: L \rightarrow \mathscr{U}(\mathscr{X}(L))$ is 1-1.
Proof: Let $a, b \in L$ and $a \neq b$. Then either $a \nless b$ or $b \nless a$. Without loss of generality we may assume that $a \nless b$.
Consequently, the filter $\uparrow a$ is disjoint from the ideal $\downarrow b$. By Stone's Lemma, there exists $x \in \mathscr{X}(L)$ such that $\uparrow a \subseteq x$ and $x \cap \downarrow b=\emptyset$. Therefore $a \in x$ and $b \notin x$. Thus $x \in \phi(a)$ and $x \notin \phi(b)$ so $\phi(a) \neq \phi(b)$

Representation of distributive lattices

Having the Stone lemma available, it is easy to show that ϕ is 1-1.

Lemma: $\phi: L \rightarrow \mathscr{U}(\mathscr{X}(L))$ is 1-1.
Proof: Let $a, b \in L$ and $a \neq b$. Then either $a \nless b$ or $b \nless a$. Without loss of generality we may assume that $a \nless b$.
Consequently, the filter $\uparrow a$ is disjoint from the ideal $\downarrow b$. By Stone's Lemma, there exists $x \in \mathscr{X}(L)$ such that $\uparrow a \subseteq x$ and $x \cap \downarrow b=\emptyset$. Therefore $a \in x$ and $b \notin x$. Thus $x \in \phi(a)$ and $x \notin \phi(b)$ so $\phi(a) \neq \phi(b)$ and so ϕ is 1-1.

Representation of distributive lattices

Having the Stone lemma available, it is easy to show that ϕ is 1-1.

Lemma: $\phi: L \rightarrow \mathscr{U}(\mathscr{X}(L))$ is 1-1.
Proof: Let $a, b \in L$ and $a \neq b$. Then either $a \nless b$ or $b \nless a$. Without loss of generality we may assume that $a \nless b$. Consequently, the filter $\uparrow a$ is disjoint from the ideal $\downarrow b$. By Stone's Lemma, there exists $x \in \mathscr{X}(L)$ such that $\uparrow a \subseteq x$ and $x \cap \downarrow b=\emptyset$. Therefore $a \in x$ and $b \notin x$. Thus $x \in \phi(a)$ and $x \notin \phi(b)$ so $\phi(a) \neq \phi(b)$ and so ϕ is 1-1.
As a consequence, we arrive at the following representation theorem for distributive lattices:

Representation of distributive lattices

Having the Stone lemma available, it is easy to show that ϕ is 1-1.

Lemma: $\phi: L \rightarrow \mathscr{U}(\mathscr{X}(L))$ is 1-1.
Proof: Let $a, b \in L$ and $a \neq b$. Then either $a \nless b$ or $b \nless a$. Without loss of generality we may assume that $a \nless b$.
Consequently, the filter $\uparrow a$ is disjoint from the ideal $\downarrow b$. By Stone's Lemma, there exists $x \in \mathscr{X}(L)$ such that $\uparrow a \subseteq x$ and $x \cap \downarrow b=\emptyset$. Therefore $a \in x$ and $b \notin x$. Thus $x \in \phi(a)$ and $x \notin \phi(b)$ so $\phi(a) \neq \phi(b)$ and so ϕ is 1-1.
As a consequence, we arrive at the following representation theorem for distributive lattices:

Representation Theorem: Each bounded distributive lattice L is isomorphic to a sublattice of $\mathscr{U}(\mathscr{X}(L))$.

Representation of distributive lattices

Having the Stone lemma available, it is easy to show that ϕ is 1-1.

Lemma: $\phi: L \rightarrow \mathscr{U}(\mathscr{X}(L))$ is 1-1.
Proof: Let $a, b \in L$ and $a \neq b$. Then either $a \nless b$ or $b \nless a$. Without loss of generality we may assume that $a \nless b$. Consequently, the filter $\uparrow a$ is disjoint from the ideal $\downarrow b$. By Stone's Lemma, there exists $x \in \mathscr{X}(L)$ such that $\uparrow a \subseteq x$ and $x \cap \downarrow b=\emptyset$. Therefore $a \in x$ and $b \notin x$. Thus $x \in \phi(a)$ and $x \notin \phi(b)$ so $\phi(a) \neq \phi(b)$ and so ϕ is 1-1.
As a consequence, we arrive at the following representation theorem for distributive lattices:

Representation Theorem: Each bounded distributive lattice L is isomorphic to a sublattice of $\mathscr{U}(\mathscr{X}(L))$. Therefore each bounded distributive lattice can be represented as a sublattice of the lattice of upsets of some poset.

Representation of distributive lattices

However, L may not be isomorphic to $\mathscr{U}(\mathscr{X}(L))$.

Representation of distributive lattices

However, L may not be isomorphic to $\mathscr{U}(\mathscr{X}(L))$. Indeed, $\mathscr{U}(\mathscr{X}(L))$ is always a complete lattice.

Representation of distributive lattices

However, L may not be isomorphic to $\mathscr{U}(\mathscr{X}(L))$. Indeed, $\mathscr{U}(\mathscr{X}(L))$ is always a complete lattice. Therefore if L is not complete, then L can not be isomorphic to $\mathscr{U}(\mathscr{X}(L))$.

Representation of distributive lattices

However, L may not be isomorphic to $\mathscr{U}(\mathscr{X}(L))$. Indeed, $\mathscr{U}(\mathscr{X}(L))$ is always a complete lattice. Therefore if L is not complete, then L can not be isomorphic to $\mathscr{U}(\mathscr{X}(L))$.

Is there any way to single the ϕ-image of L out of $\mathscr{U}(\mathscr{X}(L))$?

Representation of distributive lattices

However, L may not be isomorphic to $\mathscr{U}(\mathscr{X}(L))$. Indeed, $\mathscr{U}(\mathscr{X}(L))$ is always a complete lattice. Therefore if L is not complete, then L can not be isomorphic to $\mathscr{U}(\mathscr{X}(L))$.

Is there any way to single the ϕ-image of L out of $\mathscr{U}(\mathscr{X}(L))$? The answer is YES

Representation of distributive lattices

However, L may not be isomorphic to $\mathscr{U}(\mathscr{X}(L))$. Indeed, $\mathscr{U}(\mathscr{X}(L))$ is always a complete lattice. Therefore if L is not complete, then L can not be isomorphic to $\mathscr{U}(\mathscr{X}(L))$.

Is there any way to single the ϕ-image of L out of $\mathscr{U}(\mathscr{X}(L))$? The answer is YES but it involves the notion of topology-one of the fundamental notions in mathematics!

Representation of distributive lattices

However, L may not be isomorphic to $\mathscr{U}(\mathscr{X}(L))$. Indeed, $\mathscr{U}(\mathscr{X}(L))$ is always a complete lattice. Therefore if L is not complete, then L can not be isomorphic to $\mathscr{U}(\mathscr{X}(L))$.

Is there any way to single the ϕ-image of L out of $\mathscr{U}(\mathscr{X}(L))$? The answer is YES but it involves the notion of topology-one of the fundamental notions in mathematics!

We will outline the basic notions of topology needed for our purposes in the next lecture.

