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Lecture 1: Basics of lattice theory



Introduction
Lattice Theory is a relatively new branch of mathematics, which
lies on the interface of algebra and logic.

The origins of lattice theory can be traced back to George Boole
(1815 – 1864) (“An Investigation of the Laws of Thought...”,
1854).

Richard Dedekind (1831 - 1916), in a series of papers around
1900, laid foundation of lattice theory.

But it wasn’t until the 1930ies and 1940ies that lattice theory
became an independent branch of mathematics with its own
internal problematics, thanks to the work of such
mathematicians as Garett Birkhoff (1911 – 1996), Marshall
Stone (1903 - 1989) , Alfred Tarski (1902 - 1983), and Robert
Dilworth (1914 - 1993).

Further advances in lattice theory were obtained by Bjarni
Jónsson, Bernhard Banaschewski, George Grätzer, and many
many others..
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Introduction

Why is Lattice Theory useful for logic??

Well..

Lattices encode algebraic behavior of the entailment
relation and such basic logical connectives as “and” (∧,
conjunction) and “or” (∨, disjunction).

Relationship between syntax and semantics is likewise
reflected in the relationship between lattices and their dual
spaces.

Duals are used to provide various useful representation
theorems for lattices, which reflect various completeness
results in logic. We will address this issue in detail in
Lecture 5.
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Introduction

Our aim is to give a systematic yet elementary account of basics
of lattice theory and its connection to topology.

After providing the necessary prerequisites, we will describe the
dual spaces of distributive lattices, and the representation
theorems provided by the duality.

The logical significance of these theorems lies in the fact that
they are essentially equivalent to results about relational and
topological completeness of some well-known propositional
calculi.
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Posets

A pair (P, 6) is called a poset (shorthand for partially ordered
set) if P is a nonempty set and 6 is a partial order on P; that is
6 is a binary relation on P which is reflexive, antisymmetric,
and transitive.

Reflexive: p 6 p for all p ∈ P.

Antisymmetric: If p 6 q and q 6 p, then p = q for all
p, q ∈ P.

Transitive: If p 6 q and q 6 r, then p 6 r for all p, q, r ∈ P.
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Hasse diagrams

There is a very useful way to depict posets using the so called
Hasse diagrams.

Rough idea: To indicate p 6 q, we picture p somewhere below
q, and draw a line connecting p with q. To make pictures easy to
draw and understand, if p 6 q and q 6 r, we only draw lines
connecting p and q, and q and r, and don’t draw a connecting
line between p and r.

Of course, p 6 r by transitivity, but connecting p and r by a line
would make the diagram messy, so we avoid it. By the same
reason, we don’t draw a loop connecting p with itself.
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Hasse diagrams
Example: Let P = {a, b, c, d, e} with

a 6 a a 6 b a 6 c a 6 d a 6 e
b 6 b b 6 d b 6 e

c 6 c c 6 d c 6 e
d 6 d

e 6 e.

Then the corresponding Hasse diagram looks like this:
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Hasse diagrams

A nonempty set P can be equipped with the simplest (and least
interesting) partial order — the discrete order “6”=“=”.

That
is, in (P, =) we have p 6 q if and only if p = q.

The corresponding Hasse diagram does not thus have any lines,
and looks like this:

• • • • •
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Hasse diagrams

A nonempty set P of real numbers produces a poset by taking
the usual order for “6”. This order is always linear.

That is, it
satisfies:

for all p, q ∈ P, either p 6 q or q 6 p.

Hasse diagrams of linear orders look like this:

•

•

•

•
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Order-isomorphisms

Let f : P→ Q be a map between two posets P and Q.

We call f
order-preserving if p 6 q implies f(p) 6 f(q) for each p, q ∈ P.

We call f : P→ Q an order-isomorphism if f is an
order-preserving 1-1 and onto map such that its inverse is also
order-preserving.

The latter requirement is necessary since there exist 1-1 and
onto order-preserving maps whose inverses aren’t
order-preserving.
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Example: Consider the following map f : P→ Q:

P Q

• � // •

• � // •

It is clearly 1-1 onto order-preserving. However it’s inverse is
not order-preserving.
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Suprema and infima

Let (P, 6) be a poset. Whenever there exists p ∈ P such that
q 6 p for each q ∈ P, we call p the largest or top element of P
and denote it by 1.

Similarly, whenever there exists p ∈ P such that p 6 q for each
q ∈ P, we call p the least or bottom element of P and denote it
by 0.
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Let (P, 6) be a poset and let S ⊆ P. We call u ∈ P an upper
bound of S if s 6 u for all s ∈ S. We denote the set of upper
bounds of S by Su.

Similarly, we call l ∈ P a lower bound of S if l 6 s for all s ∈ S.
We denote the set of lower bounds of S by Sl.

We say that S ⊆ P possesses a least upper bound (shortly lub),
or supremum, or join, if there exists a least element in Su.

If S has lub, then we denote it by Sup(S) or
∨

S.

Similarly, we say that S ⊆ P possesses a greatest lower bound
(shortly glb), or infimum, or meet, if there exists a greatest
element in Sl.

If S has glb, then we denote it by Inf(S) or
∧
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Lattices
We call a poset (P, 6) a lattice if

p ∨ q = Sup{p, q}

and
p ∧ q = Inf{p, q}

exist for all p, q ∈ P.

Examples:
(1) Here are Hasse diagrams of a couple of finite lattices:
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Lattices

(2) Any linearly ordered set is a lattice, where

a ∨ b = max(a, b) =

{
b if a 6 b,

a if a > b

and

a ∧ b = min(a, b) =

{
a if a 6 b,

b if a > b.

(3) The following posets, however, are not lattices:
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Lattices

Fact: Let L be a lattice. Then all nonempty finite subsets of L
possess suprema and infima.

Proof (Sketch): Let a1, a2, ..., an ∈ L. Then an easy induction
gives: ∨

{a1, a2, ..., an} = (...(a1 ∨ a2) ∨ ...) ∨ an

and ∧
{a1, a2, ..., an} = (...(a1 ∧ a2) ∧ ...) ∧ an.

Therefore,
∨
{a1, a2, ..., an} and

∧
{a1, a2, ..., an} exist in L.
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Complete lattices

However, there exist lattices L in which not all subsets of L have
suprema and infima.

Examples:

(1) Let Z be the lattice of all integers with the usual (linear)
ordering. Then the set of positive integers has no supremum
and the set of negative integers has no infimum in Z.

(2) Let N denote the set of non-negative integers. Then the set
PfinN of finite subsets of N is a lattice with set-theoretic union
and intersection as lattice operations. However, the set of all
finite subsets of PfinN has no supremum.
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Complete lattices

We call a poset (P, 6) a complete lattice if every subset of P has
both supremum and infimum.

Examples:

(1) The interval [0, 1] with the usual (linear) ordering forms a
complete lattice.

(2) The powerset PX of a set X is a complete lattice with
respect to the order 6=⊆. In fact, for each S ⊆PX we have∨

S =
⋃

S and
∧

S =
⋂
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Complete lattices

We call a lattice bounded if it has both top and bottom.

Fact: Every complete lattice is bounded, but not vice versa.

Example: Let Q be the set of rational numbers, and let
L = [0, 1] ∩Q. Then L is bounded, but it is not complete.
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Lattices as algebras

It turns out that one can equivalently define the lattice structure
on a set purely in terms of the binary operations ∧ and ∨.

Fact: In a lattice, ∨ and ∧ satisfy the following identities:
1 a ∨ b = b ∨ a and a ∧ b = b ∧ a (commutativity).

2 (a ∨ b) ∨ c = a ∨ (b ∨ c) and (a ∧ b) ∧ c = a ∧ (b ∧ c)
(associativity).

3 a ∨ a = a = a ∧ a (idempotency).

4 a ∧ (a ∨ b) = a = a ∨ (a ∧ b) (absorption).

Moreover, a 6 b iff a ∧ b = a iff a ∨ b = b.
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Lattices as algebras

Conversely, suppose L is a nonempty set equipped with two
binary operations ∧,∨ : L× L→ L satisfying the identities above.

Then we can define 6 on L as follows:

a 6 b iff a ∧ b = a iff a ∨ b = b.

Fact: We have that 6 is a partial order on L, that
Sup{a, b} = a ∨ b, and that Inf{a, b} = a ∧ b for each a, b ∈ L.

Thus, we can think of lattices as algebras (L,∨,∧), where
∨,∧ : L2 → L are two binary operations on L satisfying the
commutativity, associativity, idempotency, and absorption laws.
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Lattice homomorphisms and isomorphisms

A map f : L→ K between two lattices L and K is called a lattice
homomorphism if f(x ∧ y) = f(x)∧ f(y) and f(x ∨ y) = f(x)∨ f(y)
for all x, y ∈ L.

That is, f preserves ∧ and ∨.

Clearly each lattice homomorphism is order-preserving: if x 6 y
then x ∧ y = x; therefore f(x) = f(x ∧ y) = f(x) ∧ f(y), which
means that f(x) 6 f(y).

A lattice isomorphism is a 1-1 and onto lattice homomorphism.
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Distributive laws

Let L be a lattice and let a, b, c ∈ L. It is easy to see that

(a ∧ b) ∨ (a ∧ c) 6 a ∧ (b ∨ c)

and that
a ∨ (b ∧ c) 6 (a ∨ b) ∧ (a ∨ c).

We say that in L meet distributes over join if for each a, b, c ∈ L
we have

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

Dually, we say that join distributes over meet if

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

These laws are called the distributive laws.
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Distributive laws.

In fact, in every lattice the two distributive laws are equivalent
to each other.

We show that a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) implies
a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c). The converse is proved similarly.

Suppose a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) holds in a lattice L. For
p, q, r ∈ L we have:

(p ∨ q) ∧ (p ∨ r) = [(p ∨ q) ∧ p] ∨ [(p ∨ q) ∧ r]
= p ∨ ((p ∨ q) ∧ r)
= p ∨ (r ∧ (p ∨ q))
= p ∨ [(r ∧ p) ∨ (r ∧ q)]
= [p ∨ (r ∧ p)] ∨ (r ∧ q)
= p ∨ (r ∧ q)
= p ∨ (q ∧ r).
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Distributive lattices

A lattice L is called distributive if the above distributive laws
hold in it.

Examples:

(1) Each linearly ordered set is a distributive lattice.

(2) P(X) is a distributive lattice for each set X.

(3) Let (P, 6) be a poset. We call A ⊆ P an upset of P if x ∈ A
and x 6 y imply y ∈ A. Let U (P) denote the set of upsets of P.
Then (U (P),∪,∩) is a distributive lattice.

Dually, A is called a downset of P if x ∈ A and y 6 x imply y ∈ A.
Let D(P) denote the set of downsets of P. Then (D(P),∪,∩) is a
distributive lattice.
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On the other hand, not every lattice is distributive.

Examples:

(1) The lattice depicted below, and called the diamond, is not
distributive.
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Birkhoff’s characterization of distributive lattices

The next theorem, due to Birkhoff, says that the diamond and
pentagon are essentially the only reason for non-distributivity in
lattices.

Let L be a lattice and S ⊆ L. If for each a, b ∈ S we have
a∨ b, a∧ b ∈ S, then we call S a sublattice of L. If in addition L is
bounded and 0, 1 ∈ S, then we call S a bounded sublattice of L.

We say that a lattice K is isomorphic to a (bounded) sublattice S
of L if there exists a (bounded) lattice isomorphism from K onto
S.
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Birkhoff’s characterization of distributive lattices

Birkhoff’ Characterization Theorem: A lattice L is distributive
if and only if neither the diamond nor the pentagon is
isomorphic to a sublattice of L.

Proof (Idea): Clearly if either the diamond or the pentagon can
be embedded into L, then L is non-distributive.

The converse is more difficult to prove. The rough idea is to
show that if L is not distributive, then we can build either the
diamond or the pentagon inside L. We skip the details.
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Boolean lattices

An important subclass of the class of distributive lattices is that
of Boolean lattices

in which every element has the complement.

Let L be a bounded lattice and a ∈ L. A complement of a is an
element b of L such that

a ∨ b = 1 and a ∧ b = 0.

In general a may have several complements or none.
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Examples:

(1) In the diamond, the elements a, b, and c are complements of
each other.
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Boolean lattices

(3) 0 and 1 are always complements of each other.

(4) In a linearly ordered bounded lattice 0 and 1 are the only
elements possessing complements.

Lemma: In a bounded distributive lattice complements are
unique whenever they exist.

Proof: If b and b′ are both complements of a, then

b = b∧ 1 = b∧ (a∨ b′) = (b∧ a)∨ (b∧ b′) = 0∨ (b∧ b′) = b∧ b′

Therefore b ≤ b′. A similar argument gives us b′ ≤ b. Thus
b = b′ and so complements are unique whenever they exist.

We denote the complement of a by ¬a.
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Boolean lattices

Definition: We call a bounded distributive lattice L a Boolean
lattice if each element of L has the complement.

Examples:

(1) For each set S the lattice P(S) of all subsets of S is a
Boolean lattice (with usual set-theoretic operations of union,
intersection, and complement).

(2) Let S be an infinite set. We call a subset A of S cofinite if
S− A is finite. Let FC(S) denote the set of finite and cofinite
subsets of S. Then it is easy to see that FC(S) is a Boolean lattice
(with usual set-theoretic operations of union, intersection, and
complement).
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Heyting lattices

Another important subclass of the class of distributive lattices is
that of Heyting lattices.

A Heyting lattice is a bounded distributive lattice L such that for
each a, b ∈ L the set

{x ∈ L | a ∧ x 6 b}

has a largest element. As usual, we will denote this element by
a→ b and call it the implication of a to b.

Thus, in a Heyting lattice L we have:

a ∧ x 6 b iff x 6 a→ b

for all a, b, x ∈ L.
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Examples:

(1) Each Boolean lattice is a Heyting lattice.

Indeed set

a→ b = ¬a ∨ b.

Then a ∧ (¬a ∨ b) = (a ∧ ¬a) ∨ (a ∧ b) = 0 ∨ (a ∧ b) = a ∧ b 6 b.
Moreover if a ∧ x 6 b then

x = 1 ∧ x = (¬a ∨ a) ∧ x = (¬a ∧ x) ∨ (a ∧ x) 6 ¬a ∨ b.
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a→ b = ¬a ∨ b.

Then a ∧ (¬a ∨ b) = (a ∧ ¬a) ∨ (a ∧ b) = 0 ∨ (a ∧ b) = a ∧ b 6 b.
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Heyting lattices

(2) Each finite distributive lattice L is a Heyting lattice.

Indeed
simply set

a→ b =
∨
{x ∈ L | a ∧ x 6 b}

and use distributivity to show that a ∧ (a→ b) 6 b.

This example also shows that the class of Heyting lattices is
properly larger than the class of Boolean lattices.

(3) Each bounded linearly ordered lattice is a Heyting lattice
where

a→ b =

{
1 if a 6 b,

b otherwise.

On the other hand, not every bounded distributive lattice is a
Heyting lattice.
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Heyting lattices
Let L be the lattice shown below:
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a2
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a1
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b2
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a
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????

0

����

It is easy to see that L is a complete distributive lattice. However

{x | a ∧ x 6 0}

does not have a largest element. Thus L is not a Heyting lattice.
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Heyting lattices

Note that the following infinite distributive law fails in L:

(∧,
∨

-distributivity) a ∧
∨

S =
∨
{a ∧ s | s ∈ S}

This is exactly the reason that L is not a Heyting lattice because
a complete distributive lattice is a Heyting lattice iff the
(∧,

∨
)-distributivity holds in it.
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