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Topology and modal logic

McKinsey and Tarski 1944
‒ Interpret propositions as subsets of a topological space
‒ Interpret Boolean operations as their set-theoretic

counterparts
‒ Interpret the modal diamond as closure, or as derivative
 S4 is the modal logic of any crowded, separable, 

metrizable space

 Rasiowa and Sikorski 1963
 S4 is the modal logic of any crowded, metrizable space

 So any Rn generates S4
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Mapping a map
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(M)Any subsets – wild logics

• Any finite connected quasiorder (S4-frame) is an 
interior image of Rn 

[G. Bezhanishvili and Gehrke, 2002]

• The subalgebras of the closure algebra (℘(Rn), C) 
generate all connected extensions of S4

• The subalgebras of the closure algebra (℘(Q), C) 
generate all normal extensions of S4

[G. Bezhanishvili, DG and Lucero-Bryan, 2015]

• Too many subsets! 
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Nice subsets – tame logics?

• Piecewise linear subsets = polytopes











Nice subsets – tame logics?

• Piecewise linear subsets = polytopes

PCn = C-logic of all polytopal subsets of Rn

PDn = d-logic of all polytopal subsets of Rn

Our aim is to investigate these modal systems
• In this talk - PCn



General observations

If A ∩ B = ∅ and  A ⊆ CB
Then dim(A) < dim(B)

Put βA ≡ CA\A   (boundary of A)
Then βnA = ∅ iff dim(A) < n

It follows that each PCn is a logic of finite height.
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Forbidden frames for PCn

.

.

.
n+1

PCn is an extension of S4.Grzn



PC1

• PC1 is the modal logic of a 2-fork
[van Benthem, G. Bezhanishvili and Gehrke, 2003]



PC2 – forbidden frames
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PC2 – forbidden frames

Any other forbidden configurations?



Example
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Lemma: Any crown frame is a partial polygonal interior image of the 
plane.

31

PC2 – admitted frames



PC2 – Axiomatization

Bad, but almost good guys Very nice guys



PC2 – admitted frames

Lemma: Any rooted poset not reducible to any of the 
forbidden frames is a p-morphic image of a crown 
frame.

Theorem: The logic PC2 is axiomatizable by Jankov-
Fine axioms of the five forbidden frames.



PC3 – forbidden frames



PC3 – forbidden frames

Any other forbidden configurations?



PC3 – Spherical (open) polyhedra



Planar graphs

• A graph is planar if it can be drawn on the plane 
(=on a surface of a sphere) without intersecting 
edges



Non-planar graphs

K3,3K5



PC3 – forbidden frames

K5 K3,3



PC3 – forbidden frames

K5 K3,3

Anything else?



Face posets of sphere triangulations
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