Modal logics of polytopes – what we know so far

David Gabelaia

in collaboration with Members of Esakia Seminar

Guram Bezhanishvili, Nick Bezhanishvili, Mamuka Jibladze, Evgeny Kuznetsov, Kristina Gogoladze, Maarten Marx, Levan Uridia et alii

Topology and modal logic

McKinsey and Tarski 1944

- Interpret propositions as subsets of a topological space
- Interpret Boolean operations as their set-theoretic counterparts
- Interpret the modal diamond as closure, or as derivative
- S4 is the modal logic of any crowded, separable, metrizable space
- Rasiowa and Sikorski 1963
 - S4 is the modal logic of any crowded, metrizable space
- \blacksquare So any \mathbb{R}^n generates S4

Map of an Island Mapping f S Α В

(M)Any subsets – wild logics

• Any finite connected quasiorder (S4-frame) is an interior image of \mathbb{R}^n

[G. Bezhanishvili and Gehrke, 2002]

(M)Any subsets – wild logics

• Any finite connected quasiorder (S4-frame) is an interior image of \mathbb{R}^n

[G. Bezhanishvili and Gehrke, 2002]

The subalgebras of the closure algebra ((Rⁿ), C) generate all connected extensions of S4

(M)Any subsets – wild logics

• Any finite connected quasiorder (S4-frame) is an interior image of \mathbb{R}^n

[G. Bezhanishvili and Gehrke, 2002]

- The subalgebras of the closure algebra ((Rⁿ), C) generate all connected extensions of S4
- The subalgebras of the closure algebra ((Q), C) generate all normal extensions of S4

[G. Bezhanishvili, DG and Lucero-Bryan, 2015]

• Too many subsets!

Nice subsets – tame logics?

• Piecewise linear subsets = polytopes

Catmull-Clark

Nice subsets – tame logics?

• Piecewise linear subsets = polytopes

PCⁿ = C-logic of all polytopal subsets of \mathbb{R}^n **PD**ⁿ = d-logic of all polytopal subsets of \mathbb{R}^n

Our aim is to investigate these modal systems

• In this talk - PCⁿ

General observations

If $A \cap B = \emptyset$ and $A \subseteq CB$ Then dim(A) < dim(B)

Put $\beta A \equiv CA \setminus A$ (boundary of A) Then $\beta^n A = \emptyset$ iff dim(A) < n

It follows that each **PC**ⁿ is a logic of finite height.

Forbidden frames for **PC**ⁿ

Forbidden frames for **PC**ⁿ

Forbidden frames for **PC**ⁿ

• **PC¹** is the modal logic of a 2-fork

[van Benthem, G. Bezhanishvili and Gehrke, 2003]

PC² – forbidden frames

PC² – forbidden frames

PC² – forbidden frames

Any other forbidden configurations?

Example

Example

Example

PC² – admitted frames

<u>Lemma</u>: Any crown frame is a partial polygonal interior image of the plane.

PC² – Axiomatization

Bad, but almost good guys

Very nice guys

PC² – admitted frames

<u>Lemma:</u> Any rooted poset not reducible to any of the forbidden frames is a p-morphic image of a crown frame.

<u>Theorem</u>: The logic **PC**² is axiomatizable by Jankov-Fine axioms of the five forbidden frames.

PC³ – forbidden frames

PC³ – forbidden frames

Any other forbidden configurations?

PC³ – Spherical (open) polyhedra

Planar graphs

 A graph is planar if it can be drawn on the plane (=on a surface of a sphere) without intersecting edges

Non-planar graphs

K₅

K_{3,3}

PC³ – forbidden frames

PC³ – forbidden frames

Anything else?

Face posets of sphere triangulations

