Modal logics of polytopes what we know so far

 David Gabelaia

 David Gabelaia}

in collaboration with
Members of Esakia Seminar

Guram Bezhanishvili, Nick Bezhanishvili, Mamuka Jibladze, Evgeny Kuznetsov, Kristina Gogoladze, Maarten Marx, Levan Uridia et alii

Topology and modal logic

- McKinsey and Tarski 1944
- Interpret propositions as subsets of a topological space
- Interpret Boolean operations as their set-theoretic counterparts
- Interpret the modal diamond as closure, or as derivative
- S4 is the modal logic of any crowded, separable, metrizable space
- Rasiowa and Sikorski 1963
- S4 is the modal logic of any crowded, metrizable space
- So any R^{n} generates $\mathbf{S 4}$

Mapping a map

Map of an Island

Mapping a map

Map of an Island

Mapping a map

Map of an Island

Mapping a map

Map of an Island

Mapping a map

Map of an Island

Mapping a map

Map of an Island

Mapping f

B

(A|S) | (A|B) | (B|S)

Mapping a map

Map of an Island

Mapping a map

Map of an Island

Kripke frame

(M)Any subsets - wild logics

- Any finite connected quasiorder (S4-frame) is an interior image of R^{n}
[G. Bezhanishvili and Gehrke, 2002]

(M)Any subsets - wild logics

- Any finite connected quasiorder (S4-frame) is an interior image of R^{n}
[G. Bezhanishvili and Gehrke, 2002]
- The subalgebras of the closure algebra ($\left.\wp\left(\mathbb{R}^{n}\right), C\right)$ generate all connected extensions of S4

(M)Any subsets - wild logics

- Any finite connected quasiorder (S4-frame) is an interior image of R^{n}
[G. Bezhanishvili and Gehrke, 2002]
- The subalgebras of the closure algebra ($\left.\wp\left(\mathbb{R}^{n}\right), C\right)$ generate all connected extensions of S4
- The subalgebras of the closure algebra ($\wp(Q), C)$ generate all normal extensions of S4
[G. Bezhanishvili, DG and Lucero-Bryan, 2015]
- Too many subsets!

Nice subsets - tame logics?

- Piecewise linear subsets = polytopes

EGEEA 00000

Nice subsets - tame logics?

- Piecewise linear subsets = polytopes
$\mathbf{P C}^{\mathbf{n}}=$ C-logic of all polytopal subsets of R^{n}
$P^{n}=d$-logic of all polytopal subsets of R^{n}

Our aim is to investigate these modal systems

- In this talk - PC ${ }^{\text {n }}$

General observations

If $A \cap B=\varnothing$ and $A \subseteq C B$
Then $\operatorname{dim}(A)<\operatorname{dim}(B)$

Put $\beta \mathrm{A} \equiv \mathrm{CA} \backslash \mathrm{A} \quad$ (boundary of A)
Then $\beta^{n} A=\varnothing$ iff $\operatorname{dim}(A)<n$

It follows that each $\mathbf{P C}^{\mathbf{n}}$ is a logic of finite height.

Forbidden frames for PC^{n}

Forbidden frames for PC^{n}

Forbidden frames for $\mathrm{PC}^{\text { }}$

$\mathbf{P C}^{n}$ is an extension of $\mathbf{S 4 . G r z}{ }_{n}$

PC ${ }^{1}$

- PC ${ }^{1}$ is the modal logic of a 2-fork
[van Benthem, G. Bezhanishvili and Gehrke, 2003]

$P C^{2}$ - forbidden frames

$P C^{2}$ - forbidden frames

$P C^{2}-$ forbidden frames

Any other forbidden configurations?

Example

Example

Example

P^{2} - admitted frames

Lemma: Any crown frame is a partial polygonal interior image of the plane.

PC ${ }^{2}$ - Axiomatization

Bad, but almost good guys
Very nice guys

P^{2} - admitted frames

Lemma: Any rooted poset not reducible to any of the forbidden frames is a p-morphic image of a crown frame.

Theorem: The logic PC^{2} is axiomatizable by JankovFine axioms of the five forbidden frames.

PC³ - forbidden frames

PC³ - forbidden frames

Any other forbidden configurations?

PC^{3} - Spherical (open) polyhedra

Planar graphs

- A graph is planar if it can be drawn on the plane (=on a surface of a sphere) without intersecting edges

Non-planar graphs

K_{5}

$K_{3,3}$

$P C^{3}$ - forbidden frames

$P C^{3}$ - forbidden frames

Anything else?

Face posets of sphere triangulations

