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MT44 Two topological semantics are introduced
e c-semantics --+ diamond is closure

o d-semantics --» diamond is derivative (limit point operator)

o d-semantics is strictly more expressive than c-semantics;
A=AUdA

THEOREM

The c-logic of any separable metrizable dense-in-itself (dii) space is

S4.

COROLLARY

S4 is the c-logic of the real line R, the space of rational numbers
Q and the Cantor discontinuum C.
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o d-semantics --» diamond is derivative (limit point operator)

e d-semantics is strictly more expressive than c-semantics;
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DEFINITION

The key component of defining the forcing relation for a given
valuation:

x E O iff YUy, dy € Uy — {x}, y=¢ (Diamond version)
x =EOpiff U, Yy e Ux—{x}, yE ¢ (Box version)
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DEFINITION

The key component of defining the forcing relation for a given
valuation:

x E O iff YUy, dy € Uy — {x}, y=¢ (Diamond version)
x =EOpiff U, Yy e Ux—{x}, yE ¢ (Box version)

d-Logic of a class of spaces C:
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D-SEMANTICS

DEFINITION

The key component of defining the forcing relation for a given
valuation:

x E O iff YUy, dy € Uy — {x}, y=¢ (Diamond version)
x =EOpiff U, Yy e Ux—{x}, yE ¢ (Box version)

d-Logic of a class of spaces C:

La(C) ={p: VX €C, X ¢}

LE First systematic study of d-semantics
01 All spaces --» wK4 =K+ 0O0p — pV Op (least)
01 Tg4 spaces --» K4d =K+ O00p — Op
81 Scattered spaces --+ GL=K+O(Op — p) — Op
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EUCLIDEAN SPACES

THEOREM AND COROLLARY (VS90)

T: K4D = K4 + T is the d-logic of any zero-dimensional
separable dense-in-itself metrizable space.
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EUCLIDEAN SPACES

THEOREM AND COROLLARY (VS90)

T: K4D = K4 + T is the d-logic of any zero-dimensional
separable dense-in-itself metrizable space.

C: K4D is the d-logic of both Q and C.

Two THEOREMS (VS)
90 For any finite n > 2, L4(R") = K4DG; = K4D + G;
(where Gy = O (O p Vv O =p) — (Op v O-p)).
2000’s Ly(R) = KADG,.

Geometric approach to obtain Ly(Q) = K4D.
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Obtain a copy of QQ that allows for ‘easy’ utilization of results for
Kripke frames.
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(o, \)={re€eX: o<k <A}
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OUTLINE OF METHOD

GOAL

Obtain a copy of QQ that allows for ‘easy’ utilization of results for
Kripke frames.

PROCESS

@ Define a dense strict linear order, <, without endpoints on the
set of (finite) strings of nonzero integers, X.

@ By Cantor's theorem, (X, <) and Q are (order-)isomorphic.

@ Equip X with the order topology, 7, induced by <.
Recall a basis for 7 is {(o,A\) : 0, A € L} where
(o, \)={re€eX: o<k <A}

The space (X, 7) is homeomorphic to the space Q.
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EMBEDDING 2 INTO L

Define recursively h: ¥ — L as depicted below:
Set h(A) = (0,—1) and assume h(c) is defined.
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ORDERING X

Define < on X via the projection into R as depicted below:
o < Xiff w(h(o)) < w(h(N)) in R.

w(h(o. — 1)) | w(h(o. — 2)) 7(h(o)) 7(h(c.2)) | 7(h(c.1))
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CORRECT MAPS

DEeFINITION (BEGO5)

A d-morphism is a function f : X — W from a space (X, 7) to a
frame (W, R), such that VA C W:

d(f71(A)) = FH(RT}(A)).
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CORRECT MAPS

DEFINITION (BEGO5)

A d-morphism is a function f : X — W from a space (X, 7) to a
frame (W, R), such that VA C W:

d(f71(A)) = FH(RT}(A)).

THEOREM (BEGO05)

An onto d-morphism preserves validity; equivalently reflects
refutation.

X = ¢ implies (W, R) = . (Preserve Validity)
(W, R) F~ ¢ implies X B~ . (Reflect Refutation)

v
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COUNTABLE ROOTED K4-FRAMES

THEOREM

Let (W, R) be transitive, rooted and countable.
There are X C ¥ and onto d-morphism f : X — W.
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Background  Constructing a Copy of Q@  Mappings from (X, <) New Classes of Spaces and Frames d-Logics Without FMP
COUNTABLE ROOTED K4-FRAMES

THEOREM

Let (W, R) be transitive, rooted and countable.
There are X C ¥ and onto d-morphism f : X — W.
Hence, (W, R) is a d-morphic image of a subspace of Q.

COROLLARY

| \

Let C be a countable collection of countable rooted K4-frames,
dX C Q so that Ly(X) C L(C).
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COUNTABLE ROOTED K4-FRAMES

THEOREM

Let (W, R) be transitive, rooted and countable.
There are X C ¥ and onto d-morphism f : X — W.
Hence, (W, R) is a d-morphic image of a subspace of Q.

COROLLARY

Let C be a countable collection of countable rooted K4-frames,
dX C Q so that Ly(X) C L(C).

REMARK

When using this method to realize subspaces of Q:

| \

o Completeness always holds.

@ Soundness must be checked.
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VARIABLE FREE FORMULAS

Let:

X be Td,
(W, R) be K4-frame,
f : X — W be onto d-morphism, and

¢ be a variable free formula (closed formula).
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VARIABLE FREE FORMULAS

LEMMA
Let:
X be Ty,
(W, R) be K4-frame,
f : X — W be onto d-morphism, and

¢ be a variable free formula (closed formula).
Then X (£ ¢ implies (W, R) [~ ¢;
equivalently (W, R) = ¢ implies X = ¢.
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SOME D-LOGICS ARISING FROM SUBSPACES OF QQ

THEOREM

The following logics are the d-logic of some subspace of Q.
Qo K4

© L containing K4 and axiomatized by variable free formulas

KAD = K4 +OT
wGL = K4 + 001
GL,=K4+0O"L

K4aA, =K4+0"0T

K4, =K4 + O"01L — OO 0L
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MORE D-LOGICS ARISING FROM SUBSPACES OF Q

MAIN RESULTS

@ Subspaces of QQ give rise to continuum many d-logics over K4.
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MORE D-LOGICS ARISING FROM SUBSPACES OF QQ

MAIN RESULTS

@ Subspaces of QQ give rise to continuum many d-logics over K4.

@ There exist continuum many d-logics of subspaces of Q that
are not finitely axiomatizable.

@ There exist continuum many d-logics of subspaces of Q that
are not decidable.

@ There exist continuum many d-logics of subspaces of (Q that
do not have the FMP.
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SCATTERED SPACES, GL AND GL,

REcCALL

@ X is scattered if every nonempty subspace has an isolated
point.
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o X is scattered iff 3o, d¥(X) = @.
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QO GL,=K4+0O"L
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(W,R) = 0L iff R="(W) = 2. (n-deep)
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SCATTERED SPACES, GL AND GL,

REcCALL

@ X is scattered if every nonempty subspace has an isolated
point.

o X is scattered iff 3o, d¥(X) = @.
o If X is scattered then the isolated points, Iso(X), are dense.

QO GL,=K4+0O"L

X =01 iff d"(X) = @. (n-scattered)
(W,R) = 0L iff R="(W) = 2. (n-deep)

@ GL =(GL,, so...
IX C Q, Lg(X) = GL and X = o
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WEAKLY SCATTERED SPACES AND wGL

DEFINITION

o A T, space X is weakly scattered if Iso(X) is dense; i.e.
Tso(X) = X.
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WEAKLY SCATTERED SPACES AND wGL

DEFINITION

o A T, space X is weakly scattered if Iso(X) is dense; i.e.
Iso(X) = X. E.g. B(N).
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WEAKLY SCATTERED SPACES AND wGL

o A T, space X is weakly scattered if Iso(X) is dense; i.e.
Iso(X) = X. E.g. B(N).
e wGL = K4 + Q0L
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WEAKLY SCATTERED SPACES AND wGL

o A T, space X is weakly scattered if Iso(X) is dense; i.e.
Iso(X) = X. E.g. B(N).
e wGL = K4 + Q0L

REsSuLTS

wGL C GL.
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WEAKLY SCATTERED SPACES AND wGL

o A T, space X is weakly scattered if Iso(X) is dense; i.e.
Iso(X) = X. E.g. B(N).
e wGL = K4 + Q0L

wGL C GL.

X | OTOL iff X is weakly scattered.
For finite (W,R): (W,R) = OtOL iff (RT)L(imaxW) = W

iff maxW = imaxW/.
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QUASI-SCATTERED SPACES, qGL AND K4A,

DEFINITION

o A T, space X is quasi-scattered provided IsoX is scattered.
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QUASI-SCATTERED SPACES, qGL AND K4A,

o A T, space X is quasi-scattered provided IsoX is scattered.
e qgl=00O(pvOr0T) — (pvOrOT)) = O(pvOrOT)
qGL = K4 + qgl
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QUASI-SCATTERED SPACES, qGL AND K4A,

DEFINITION

o A T, space X is quasi-scattered provided IsoX is scattered.
e qgl=00O(pvOr0T) — (pvOrOT)) = O(pvOrOT)
qGL = K4 + qgl

THEOREM

@ X = qgl iff X is quasi-scattered.
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DEFINITION

e A T, space X is semi-scattered when int(IsoX) is scattered.

o sgl=0(0(pVx)— (pVX))—O(pVx)Vx where
x = O0TOTOT and sGL = K4 + sgl

THEOREM

Q@ X | sgl iff X is semi-scattered.

Q X E90"0L — O-~OTOL iff d"(IsoX) C d(X — IsoX).

Q@ sGL = N K4=, (Recall K4=, = K4 + O"001L — O—=0T0OL);
so ... sGL is the d-logic of a subspace of Q.

Q A finite frame (W, R) = sgl iff
(RT)1(imaxW) — R~ (rmaxW) is irreflexive.
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Two FOrRkSs SEPARATE GL, wGL, qGL, sGL AND
K4D

A picture says it all ...

GL K4D
[ ] 0] Q
NN o
VTV
wGL qGL
sGL
[ ] (o]




=

Q>



=

Q>



o

a

Q>



Background  Constructing a Copy of @  Mappings from (£, <) New Classes of Spaces and Frames d-Logics Without FMP

P1cTURES OF TwO FORKS AND ASSOCIATED
SUBSPACE OF Q

_1 1.v.
_1 1. [ J




Background  Constructing a Copy of @  Mappings from (£, <) New Classes of Spaces and Frames d-Logics Without FMP

P1cTURES OF TwO FORKS AND ASSOCIATED
SUBSPACE OF Q

_1 1.v.
_1 1. [ J




Background  Constructing a Copy of @  Mappings from (£, <) New Classes of Spaces and Frames d-Logics Without FMP

P1cTURES OF TwO FORKS AND ASSOCIATED
SUBSPACE OF Q

_ 1 1.v.



Background  Constructing a Copy of @  Mappings from (£, <) New Classes of Spaces and Frames d-Logics Without FMP

P1cTURES OF TwO FORKS AND ASSOCIATED
SUBSPACE OF Q

_ 1 1.v.



Background  Constructing a Copy of @  Mappings from (£, <) New Classes of Spaces and Frames d-Logics Without FMP

P1cTURES OF TwO FORKS AND ASSOCIATED
SUBSPACE OF Q




Background  Constructing a Copy of @  Mappings from (£, <) New Classes of Spaces and Frames d-Logics Without FMP

P1cTURES OF TwO FORKS AND ASSOCIATED
SUBSPACE OF Q




Background  Constructing a Copy of @  Mappings from (£, <) New Classes of Spaces and Frames d-Logics Without FMP

P1cTURES OF TwO FORKS AND ASSOCIATED
SUBSPACE OF Q

_ 1 1.v.



Background  Constructing a Copy of @  Mappings from (£, <) New Classes of Spaces and Frames d-Logics Without FMP

P1cTURES OF TwO FORKS AND ASSOCIATED
SUBSPACE OF Q

B 1 1.v.



Background  Constructing a Copy of @  Mappings from (£, <) New Classes of Spaces and Frames d-Logics Without FMP

P1cTURES OF TwO FORKS AND ASSOCIATED
SUBSPACE OF Q




Background  Constructing a Copy of @  Mappings from (£, <) New Classes of Spaces and Frames d-Logics Without FMP

P1cTURES OF TwO FORKS AND ASSOCIATED
SUBSPACE OF Q




Background  Constructing a Copy of @  Mappings from (£, <) New Classes of Spaces and Frames d-Logics Without FMP

P1cTURES OF TwO FORKS AND ASSOCIATED
SUBSPACE OF Q

_ 1 1.v.



Background  Constructing a Copy of @  Mappings from (£, <) New Classes of Spaces and Frames d-Logics Without FMP

P1cTURES OF TwO FORKS AND ASSOCIATED
SUBSPACE OF Q

_ 1 1.v.



T
L
®

~
<

Background  Constructing a Copy of @  Mappings from (£, <) New Classes of Spaces and Frames d-Logics Without FMP

P1cTURES OF TwO FORKS AND ASSOCIATED
SUBSPACE OF Q




Background  Constructing a Copy of @  Mappings from (£, <) New Classes of Spaces and Frames d-Logics Without FMP

P1cTURES OF TwO FORKS AND ASSOCIATED
SUBSPACE OF Q

_ 1 1.v.



Background  Constructing a Copy of @  Mappings from (£, <) New Classes of Spaces and Frames d-Logics Without FMP

P1cTURES OF TwO FORKS AND ASSOCIATED
SUBSPACE OF Q

e e e v
e e fope v
oo pofofe v




Background  Constructing a Copy of @  Mappings from (X, <) New Classes of Spaces and Frames d-Logics Without FMP
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DEFINITION (RECALL)

A logic L has the finite model property (FMP) provided any
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FINITE MODEL PROPERTY

DEFINITION (RECALL)

A logic L has the finite model property (FMP) provided any
nontheorem ¢ of L is refuted on some finite L-frame §.

L(&) does not have the FMP.

6 (1) Put oy =OF L AQT
5 nEajiffn=1i
3 & = gl A Qa; — —gl A Qo
Only w [~ gl
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AN INTERVAL OF Locgics WiTHouT FMP

THEOREM (CZ97)

Ly = Ka4+{-glAlaj— —glAJajt1:i€w}
I = [Lo, L(®)]

@ No L €/ has the FMP.

@ / is uncountable.

@ Infinitely many L € [ are finitely axiomatizable.

ApPrPLY CONSTRUCTION
Apply construction to & to build X C Q.
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THEOREM J

Iso(X)
Iso(dX)
XCQ
Iso(d?X) =
ISO(d3X) built from &
D (dii)
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A MOTIVATING FRAME

Add two points to &:

nEajiffn=i
) }: —sgl A Qaj — —sgl A Qajr1
Only w [~ sgl
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UNCOUNTABLY MANY D-Locics WitHouT FMP

AprPLY CONSTRUCTION

Build X, € Q from §,.

Lg(Xy) € J and so ... Lg(X,) does not have the FMP.

Since Lqg(Xy) # Lg(Xs) for distinct 7,6 Cw ...

THEOREM (RECALL)

There exist continuum many d-logics of subspaces of Q that do
not have the FMP.
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