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Background Constructing a Copy of Q Mappings from (Σ, <) New Classes of Spaces and Frames d-Logics Without FMP

Topological Semantics

MT44 Two topological semantics are introduced

c-semantics 99K diamond is closure
d-semantics 99K diamond is derivative (limit point operator)
d-semantics is strictly more expressive than c-semantics;
A = A ∪ dA

Theorem

The c-logic of any separable metrizable dense-in-itself (dii) space is
S4.

Corollary

S4 is the c-logic of the real line R, the space of rational numbers
Q and the Cantor discontinuum C.
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d-Semantics

Definition

The key component of defining the forcing relation for a given
valuation:

x |= ♦ϕ iff ∀Ux , ∃y ∈ Ux − {x}, y |= ϕ (Diamond version)

x |= �ϕ iff ∃Ux , ∀y ∈ Ux − {x}, y |= ϕ (Box version)

d-Logic of a class of spaces C:

Ld(C) = {ϕ : ∀X ∈ C, X |= ϕ}

LE First systematic study of d-semantics

01 All spaces 99K wK4 = K + ♦♦p → p ∨ ♦p (least)
01 Td spaces 99K K4 = K + ♦♦p → ♦p
81 Scattered spaces 99K GL = K +�(�p → p)→ �p
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Euclidean Spaces

Theorem and Corollary (VS90)

T: K4D = K4 + ♦> is the d-logic of any zero-dimensional
separable dense-in-itself metrizable space.

C: K4D is the d-logic of both Q and C.

Two Theorems (VS)

90 For any finite n ≥ 2, Ld(Rn) = K4DG1 = K4D + G1

(where G1 = � (�+p ∨�+¬p)→ (�p ∨�¬p)).

2000’s Ld(R) = K4DG2.

Recent Result

Geometric approach to obtain Ld(Q) = K4D.
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Outline of Method

Goal

Obtain a copy of Q that allows for ‘easy’ utilization of results for
Kripke frames.

Process

1 Define a dense strict linear order, <, without endpoints on the
set of (finite) strings of nonzero integers, Σ.

2 By Cantor’s theorem, (Σ, <) and Q are (order-)isomorphic.

3 Equip Σ with the order topology, τ , induced by <.
Recall a basis for τ is {(σ, λ) : σ, λ ∈ Σ} where
(σ, λ) = {κ ∈ Σ : σ < κ < λ}.

Theorem

The space (Σ, τ) is homeomorphic to the space Q.
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Triangles in the Lower Half Plane
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Embedding Σ into L

Define recursively h : Σ→ L as depicted below:
Set h(Λ) = (0,−1) and assume h(σ) is defined.
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Ordering Σ

Define < on Σ via the projection into R as depicted below:
σ < λ iff π(h(σ)) < π(h(λ)) in R.
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Correct Maps

Definition (BEG05)

A d-morphism is a function f : X →W from a space (X , τ) to a
frame (W ,R), such that ∀A ⊆W :

d(f −1(A)) = f −1(R−1(A)).

Theorem (BEG05)

An onto d-morphism preserves validity; equivalently reflects
refutation.

X |= ϕ implies (W ,R) |= ϕ. (Preserve Validity)

(W ,R) 6|= ϕ implies X 6|= ϕ. (Reflect Refutation)
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Countable Rooted K4-Frames

Theorem

Let (W ,R) be transitive, rooted and countable.
There are X ⊆ Σ and onto d-morphism f : X →W .
Hence, (W ,R) is a d-morphic image of a subspace of Q.

Corollary

Let C be a countable collection of countable rooted K4-frames,
∃X ⊆ Q so that Ld(X ) ⊆ L(C).

Remark

When using this method to realize subspaces of Q:

Completeness always holds.

Soundness must be checked.
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Variable Free Formulas

Lemma

Let:

X be Td ,

(W ,R) be K4-frame,

f : X →W be onto d-morphism, and

ϕ be a variable free formula (closed formula).

Then X 6|= ϕ implies (W ,R) 6|= ϕ;
equivalently (W ,R) |= ϕ implies X |= ϕ.
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3 Arbitrary intersection of logics extending K4 by variable free
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⋂
GLn,

⋂
K4∆n,

⋂
K4Ξn



Background Constructing a Copy of Q Mappings from (Σ, <) New Classes of Spaces and Frames d-Logics Without FMP

Some d-Logics Arising from Subspaces of Q

Theorem

The following logics are the d-logic of some subspace of Q.

1 K4

2 L containing K4 and axiomatized by variable free formulas

K4D = K4 + ♦>
wGL = K4 + ♦+�⊥
GLn = K4 +�n⊥

K4∆n = K4 +�n♦>
K4Ξn = K4 + ♦n�⊥ → ♦¬♦+�⊥

3 Arbitrary intersection of logics extending K4 by variable free
formulas; e.g. GL =

⋂
GLn,

⋂
K4∆n,

⋂
K4Ξn



Background Constructing a Copy of Q Mappings from (Σ, <) New Classes of Spaces and Frames d-Logics Without FMP

Some d-Logics Arising from Subspaces of Q

Theorem

The following logics are the d-logic of some subspace of Q.

1 K4

2 L containing K4 and axiomatized by variable free formulas

K4D = K4 + ♦>
wGL = K4 + ♦+�⊥
GLn = K4 +�n⊥

K4∆n = K4 +�n♦>
K4Ξn = K4 + ♦n�⊥ → ♦¬♦+�⊥

3 Arbitrary intersection of logics extending K4 by variable free
formulas; e.g. GL =

⋂
GLn,

⋂
K4∆n,

⋂
K4Ξn



Background Constructing a Copy of Q Mappings from (Σ, <) New Classes of Spaces and Frames d-Logics Without FMP

Some d-Logics Arising from Subspaces of Q

Theorem

The following logics are the d-logic of some subspace of Q.

1 K4

2 L containing K4 and axiomatized by variable free formulas

K4D = K4 + ♦>
wGL = K4 + ♦+�⊥
GLn = K4 +�n⊥

K4∆n = K4 +�n♦>
K4Ξn = K4 + ♦n�⊥ → ♦¬♦+�⊥

3 Arbitrary intersection of logics extending K4 by variable free
formulas; e.g. GL =

⋂
GLn,

⋂
K4∆n,

⋂
K4Ξn



Background Constructing a Copy of Q Mappings from (Σ, <) New Classes of Spaces and Frames d-Logics Without FMP

Some d-Logics Arising from Subspaces of Q

Theorem

The following logics are the d-logic of some subspace of Q.

1 K4

2 L containing K4 and axiomatized by variable free formulas

K4D = K4 + ♦>
wGL = K4 + ♦+�⊥
GLn = K4 +�n⊥

K4∆n = K4 +�n♦>
K4Ξn = K4 + ♦n�⊥ → ♦¬♦+�⊥

3 Arbitrary intersection of logics extending K4 by variable free
formulas; e.g. GL =

⋂
GLn,

⋂
K4∆n,

⋂
K4Ξn



Background Constructing a Copy of Q Mappings from (Σ, <) New Classes of Spaces and Frames d-Logics Without FMP

Some d-Logics Arising from Subspaces of Q

Theorem

The following logics are the d-logic of some subspace of Q.

1 K4

2 L containing K4 and axiomatized by variable free formulas

K4D = K4 + ♦>
wGL = K4 + ♦+�⊥
GLn = K4 +�n⊥

K4∆n = K4 +�n♦>
K4Ξn = K4 + ♦n�⊥ → ♦¬♦+�⊥

3 Arbitrary intersection of logics extending K4 by variable free
formulas; e.g. GL =

⋂
GLn,

⋂
K4∆n,

⋂
K4Ξn



Background Constructing a Copy of Q Mappings from (Σ, <) New Classes of Spaces and Frames d-Logics Without FMP

More d-Logics Arising from Subspaces of Q

Main Results

1 Subspaces of Q give rise to continuum many d-logics over K4.

2 There exist continuum many d-logics of subspaces of Q that
are not finitely axiomatizable.

3 There exist continuum many d-logics of subspaces of Q that
are not decidable.

4 There exist continuum many d-logics of subspaces of Q that
do not have the FMP.
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Background Constructing a Copy of Q Mappings from (Σ, <) New Classes of Spaces and Frames d-Logics Without FMP

Scattered Spaces, GL and GLn

Recall

1 X is scattered if every nonempty subspace has an isolated
point.

X is scattered iff ∃α, dα(X ) = ∅.
If X is scattered then the isolated points, Iso(X ), are dense.

2 GLn = K4 +�n⊥

X |= �n⊥ iff dn(X ) = ∅. (n-scattered)

(W ,R) |= �n⊥ iff R−n(W ) = ∅. (n-deep)

3 GL =
⋂

GLn, so...
∃X ⊆ Q, Ld(X ) = GL and X ∼= ωω
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Weakly Scattered Spaces and wGL

Definition

A Td space X is weakly scattered if Iso(X ) is dense; i.e.
Iso(X ) = X . E.g. β(N).

wGL = K4 + ♦+�⊥.

Results

wGL ( GL.

X |= ♦+�⊥ iff X is weakly scattered.

For finite (W ,R) : (W ,R) |= ♦+�⊥ iff (R+)−1(imaxW ) = W

iff maxW = imaxW .
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Quasi-Scattered Spaces, qGL and K4∆n

Definition

A Td space X is quasi-scattered provided IsoX is scattered.

qgl = � (� (p ∨�+♦>)→ (p ∨�+♦>))→ � (p ∨�+♦>)
qGL = K4 + qgl

Theorem

1 X |= qgl iff X is quasi-scattered.

2 X |= �n♦> iff dn(IsoX ) = ∅ (IsoX is n-scattered).

3 qGL =
⋂

K4∆n (Recall K4∆n = K4 +�n♦>);
so ... qGL is the d-logic of a subspace of Q.

4 A finite frame (W ,R) |= qgl iff (R+)−1(imaxW ) is irreflexive.
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Semi-Scattered Spaces, sGL and K4Ξn

Definition

A Td space X is semi-scattered when int(IsoX ) is scattered.

sgl = � (�(p ∨ χ)→ (p ∨ χ))→ �(p ∨ χ) ∨ χ where
χ = ♦+�+♦> and sGL = K4 + sgl

Theorem

1 X |= sgl iff X is semi-scattered.

2 X |= ♦n�⊥ → ♦¬♦+�⊥ iff dn(IsoX ) ⊆ d(X − IsoX ).

3 sGL =
⋂

K4Ξn (Recall K4Ξn = K4 + ♦n�⊥ → ♦¬♦+�⊥);
so ... sGL is the d-logic of a subspace of Q.

4 A finite frame (W ,R) |= sgl iff
(R+)−1(imaxW )− R−1(rmaxW ) is irreflexive.



Background Constructing a Copy of Q Mappings from (Σ, <) New Classes of Spaces and Frames d-Logics Without FMP

Semi-Scattered Spaces, sGL and K4Ξn

Definition

A Td space X is semi-scattered when int(IsoX ) is scattered.

sgl = � (�(p ∨ χ)→ (p ∨ χ))→ �(p ∨ χ) ∨ χ where
χ = ♦+�+♦> and sGL = K4 + sgl

Theorem

1 X |= sgl iff X is semi-scattered.

2 X |= ♦n�⊥ → ♦¬♦+�⊥ iff dn(IsoX ) ⊆ d(X − IsoX ).

3 sGL =
⋂

K4Ξn (Recall K4Ξn = K4 + ♦n�⊥ → ♦¬♦+�⊥);
so ... sGL is the d-logic of a subspace of Q.

4 A finite frame (W ,R) |= sgl iff
(R+)−1(imaxW )− R−1(rmaxW ) is irreflexive.



Background Constructing a Copy of Q Mappings from (Σ, <) New Classes of Spaces and Frames d-Logics Without FMP

Semi-Scattered Spaces, sGL and K4Ξn

Definition

A Td space X is semi-scattered when int(IsoX ) is scattered.

sgl = � (�(p ∨ χ)→ (p ∨ χ))→ �(p ∨ χ) ∨ χ where
χ = ♦+�+♦> and sGL = K4 + sgl

Theorem

1 X |= sgl iff X is semi-scattered.

2 X |= ♦n�⊥ → ♦¬♦+�⊥ iff dn(IsoX ) ⊆ d(X − IsoX ).

3 sGL =
⋂

K4Ξn (Recall K4Ξn = K4 + ♦n�⊥ → ♦¬♦+�⊥);
so ... sGL is the d-logic of a subspace of Q.

4 A finite frame (W ,R) |= sgl iff
(R+)−1(imaxW )− R−1(rmaxW ) is irreflexive.



Background Constructing a Copy of Q Mappings from (Σ, <) New Classes of Spaces and Frames d-Logics Without FMP

Semi-Scattered Spaces, sGL and K4Ξn

Definition

A Td space X is semi-scattered when int(IsoX ) is scattered.

sgl = � (�(p ∨ χ)→ (p ∨ χ))→ �(p ∨ χ) ∨ χ where
χ = ♦+�+♦> and sGL = K4 + sgl

Theorem

1 X |= sgl iff X is semi-scattered.

2 X |= ♦n�⊥ → ♦¬♦+�⊥ iff dn(IsoX ) ⊆ d(X − IsoX ).

3 sGL =
⋂

K4Ξn (Recall K4Ξn = K4 + ♦n�⊥ → ♦¬♦+�⊥);
so ... sGL is the d-logic of a subspace of Q.

4 A finite frame (W ,R) |= sgl iff
(R+)−1(imaxW )− R−1(rmaxW ) is irreflexive.



Background Constructing a Copy of Q Mappings from (Σ, <) New Classes of Spaces and Frames d-Logics Without FMP

Semi-Scattered Spaces, sGL and K4Ξn

Definition

A Td space X is semi-scattered when int(IsoX ) is scattered.

sgl = � (�(p ∨ χ)→ (p ∨ χ))→ �(p ∨ χ) ∨ χ where
χ = ♦+�+♦> and sGL = K4 + sgl

Theorem

1 X |= sgl iff X is semi-scattered.

2 X |= ♦n�⊥ → ♦¬♦+�⊥ iff dn(IsoX ) ⊆ d(X − IsoX ).

3 sGL =
⋂

K4Ξn (Recall K4Ξn = K4 + ♦n�⊥ → ♦¬♦+�⊥);
so ... sGL is the d-logic of a subspace of Q.

4 A finite frame (W ,R) |= sgl iff
(R+)−1(imaxW )− R−1(rmaxW ) is irreflexive.



Background Constructing a Copy of Q Mappings from (Σ, <) New Classes of Spaces and Frames d-Logics Without FMP

Semi-Scattered Spaces, sGL and K4Ξn

Definition

A Td space X is semi-scattered when int(IsoX ) is scattered.

sgl = � (�(p ∨ χ)→ (p ∨ χ))→ �(p ∨ χ) ∨ χ where
χ = ♦+�+♦> and sGL = K4 + sgl

Theorem

1 X |= sgl iff X is semi-scattered.

2 X |= ♦n�⊥ → ♦¬♦+�⊥ iff dn(IsoX ) ⊆ d(X − IsoX ).

3 sGL =
⋂

K4Ξn (Recall K4Ξn = K4 + ♦n�⊥ → ♦¬♦+�⊥);
so ... sGL is the d-logic of a subspace of Q.

4 A finite frame (W ,R) |= sgl iff
(R+)−1(imaxW )− R−1(rmaxW ) is irreflexive.



Background Constructing a Copy of Q Mappings from (Σ, <) New Classes of Spaces and Frames d-Logics Without FMP

Semi-Scattered Spaces, sGL and K4Ξn

Definition

A Td space X is semi-scattered when int(IsoX ) is scattered.

sgl = � (�(p ∨ χ)→ (p ∨ χ))→ �(p ∨ χ) ∨ χ where
χ = ♦+�+♦> and sGL = K4 + sgl

Theorem

1 X |= sgl iff X is semi-scattered.

2 X |= ♦n�⊥ → ♦¬♦+�⊥ iff dn(IsoX ) ⊆ d(X − IsoX ).

3 sGL =
⋂

K4Ξn (Recall K4Ξn = K4 + ♦n�⊥ → ♦¬♦+�⊥);
so ... sGL is the d-logic of a subspace of Q.

4 A finite frame (W ,R) |= sgl iff
(R+)−1(imaxW )− R−1(rmaxW ) is irreflexive.



Background Constructing a Copy of Q Mappings from (Σ, <) New Classes of Spaces and Frames d-Logics Without FMP

Semi-Scattered Spaces, sGL and K4Ξn

Definition

A Td space X is semi-scattered when int(IsoX ) is scattered.

sgl = � (�(p ∨ χ)→ (p ∨ χ))→ �(p ∨ χ) ∨ χ where
χ = ♦+�+♦> and sGL = K4 + sgl

Theorem

1 X |= sgl iff X is semi-scattered.

2 X |= ♦n�⊥ → ♦¬♦+�⊥ iff dn(IsoX ) ⊆ d(X − IsoX ).

3 sGL =
⋂

K4Ξn (Recall K4Ξn = K4 + ♦n�⊥ → ♦¬♦+�⊥);
so ... sGL is the d-logic of a subspace of Q.

4 A finite frame (W ,R) |= sgl iff
(R+)−1(imaxW )− R−1(rmaxW ) is irreflexive.
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Two Forks Separate GL, wGL, qGL, sGL and
K4D

A picture says it all ...

or
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Finite Model Property

Definition (recall)

A logic L has the finite model property (FMP) provided any
nontheorem ϕ of L is refuted on some finite L-frame Fϕ.

Theorem (CZ97)

L(G) does not have the FMP.

◦ω

6
•3
...

•
6

2

•1
6

0 •
G

n |= αi iff n = i

G |= ¬gl ∧ ♦αi → ¬gl ∧ ♦αi+1

Put αi = �i+1⊥ ∧ ♦i>

Only ω 6|= gl
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An Interval of Logics Without FMP

Theorem (CZ97)

L0 = K4 + {¬gl ∧ ♦αi → ¬gl ∧ ♦αi+1 : i ∈ ω}
I = [L0, L(G)]

1 No L ∈ I has the FMP.

2 I is uncountable.

3 Infinitely many L ∈ I are finitely axiomatizable.

Apply Construction

Apply construction to G to build X ⊆ Q.
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A d-Logic Without FMP

Theorem

Ld(X ) ∈ I and so ... Ld(X ) does not have the FMP.

D (dii)

Iso(d3X )
...

Iso(d2X )

Iso(dX )

Iso(X )

X ⊆ Q

built from G

X
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A Motivating Frame

Add two points to G:

•ω + 1@
@I
◦ω

...

•n

...

•1
6
•0

�
�
�
�
�
�
�
�
�
�
�
��
◦M

H

n |= αi iff n = i

H |= ¬sgl ∧ ♦αi → ¬sgl ∧ ♦αi+1

Only ω 6|= sgl
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Using sgl:
Another Interval of Logics Without FMP

Theorem

L1 = K4 + {¬sgl ∧ ♦αi → ¬sgl ∧ ♦αi+1 : i ∈ ω}
J = [L1, L(G)]

1 No L ∈ J has the FMP.

2 J is uncountable.

3 Infinitely many L ∈ J are finitely axiomatizable.
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A Family of Frames Hγ

•ω + 1 �
��

@
@I
◦ω ◦

rn
. . . . . .@
@
@
@I...

•n

...

•1
6
•0

◦
M

6

Hγ

∀n ∈ ω,
rn occurs exactly
when n ∈ γ ⊆ ω

rn |= ♦αi ∧ ¬♦+αi+1 iff n = i

◦@
@
@
@
@
@
@
@
@
@I

J
J
J
J
J
J
J
J
J]

��
���

���:r0

Theorem

L(Hγ) ∈ J and so ... L(Hγ) does not have the FMP.
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Uncountably Many d-Logics Without FMP

Apply Construction

Build Xγ ⊆ Q from Hγ .

Theorem

Ld(Xγ) ∈ J and so ... Ld(Xγ) does not have the FMP.

Since Ld(Xγ) 6= Ld(Xδ) for distinct γ, δ ⊆ ω ...

Theorem (Recall)

There exist continuum many d-logics of subspaces of Q that do
not have the FMP.
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The End

Thanks for your attention!

and

Thanks to the organizers!

G. Bezhanishvili and J. Lucero-Bryan, ‘More on d-logics of
subspaces of the rational numbers’, Notre Dame Journal of
Formal Logic, 53 (2012), 3, 319-345.

G. Bezhanishvili and J. Lucero-Bryan, ‘Subspaces of Q whose
d-logics do not have the FMP’, Arch. Math. Logic, 51 (2012),
5, 661-670.
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