Some Modal Logics Arising from Subspaces of the Real Line

Joel G. Lucero-Bryan Khalifa University of Science, Research and Technology joel.lucero-bryan@kustar.ac.ae

> Collaboration with Guram Bezhanishvili New Mexico State University gbezhani@nmsu.edu

> > ▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

MT44 Two topological semantics are introduced

- c-semantics --→ diamond is closure
- d-semantics --+ diamond is derivative (limit point operator)
- d-semantics is strictly more expressive than c-semantics; $\overline{A} = A \cup dA$

THEOREM

The c-logic of any separable metrizable dense-in-itself (dii) space is **S4**.

COROLLARY

MT44 Two topological semantics are introduced

- c-semantics --→ diamond is closure
- d-semantics --- diamond is derivative (limit point operator)
- d-semantics is strictly more expressive than c-semantics; $\overline{A} = A \cup dA$

THEOREM

The c-logic of any separable metrizable dense-in-itself (dii) space is **S4**.

COROLLARY

MT44 Two topological semantics are introduced

- c-semantics --→ diamond is closure
- d-semantics --→ diamond is derivative (limit point operator)
- d-semantics is strictly more expressive than c-semantics; $\overline{A} = A \cup dA$

THEOREM

The c-logic of any separable metrizable dense-in-itself (dii) space is **S4**.

COROLLARY

MT44 Two topological semantics are introduced

- c-semantics --→ diamond is closure
- d-semantics ---> diamond is derivative (limit point operator)
- d-semantics is strictly more expressive than c-semantics; $\overline{A} = A \cup dA$

Theorem

The c-logic of any separable metrizable dense-in-itself (dii) space is **S4**.

COROLLARY

MT44 Two topological semantics are introduced

- c-semantics --→ diamond is closure
- d-semantics ---> diamond is derivative (limit point operator)
- d-semantics is strictly more expressive than c-semantics; $\overline{A} = A \cup dA$

Theorem

The c-logic of any separable metrizable dense-in-itself (dii) space is **S4**.

COROLLARY

DEFINITION

The key component of defining the forcing relation for a given valuation:

$$\begin{array}{l} x \models \Diamond \varphi \text{ iff } \forall U_x, \ \exists y \in U_x - \{x\}, \ y \models \varphi \quad \text{(Diamond version)} \\ x \models \Box \varphi \text{ iff } \exists U_x, \ \forall y \in U_x - \{x\}, \ y \models \varphi \quad \text{(Box version)} \end{array}$$

$$L_d(\mathcal{C}) = \{ \varphi : \forall X \in \mathcal{C}, \ X \models \varphi \}$$

01 All spaces --- $wK4 = K + \Diamond \Diamond p \rightarrow p \lor \Diamond p$ (least) 01 T_d spaces ---> $\mathbf{K4} = \mathbf{K} + \Diamond \Diamond p \rightarrow \Diamond p$ 81 Scattered spaces ---> $\mathbf{GL} = \mathbf{K} + \Box (\Box p \rightarrow p) \rightarrow \Box p$

DEFINITION

The key component of defining the forcing relation for a given valuation:

$$\begin{array}{l} x \models \Diamond \varphi \text{ iff } \forall U_x, \ \exists y \in U_x - \{x\}, \ y \models \varphi \quad \text{(Diamond version)} \\ x \models \Box \varphi \text{ iff } \exists U_x, \ \forall y \in U_x - \{x\}, \ y \models \varphi \quad \text{(Box version)} \end{array}$$

d-Logic of a class of spaces C:

$$L_d(\mathcal{C}) = \{ \varphi : \forall X \in \mathcal{C}, \ X \models \varphi \}$$

LE First systematic study of d-semantics 01 All spaces ---> $wK4 = K + \Diamond \Diamond p \rightarrow p \lor \Diamond p$ (least) 01 T_d spaces ---> $K4 = K + \Diamond \Diamond p \rightarrow \Diamond p$ 81 Scattered spaces ---> $GL = K + \Box(\Box p \rightarrow p) \rightarrow \Box p$

DEFINITION

The key component of defining the forcing relation for a given valuation:

$$\begin{array}{l} x \models \Diamond \varphi \text{ iff } \forall U_x, \ \exists y \in U_x - \{x\}, \ y \models \varphi \quad \text{(Diamond version)} \\ x \models \Box \varphi \text{ iff } \exists U_x, \ \forall y \in U_x - \{x\}, \ y \models \varphi \quad \text{(Box version)} \end{array}$$

d-Logic of a class of spaces C:

$$L_d(\mathcal{C}) = \{ \varphi : \forall X \in \mathcal{C}, \ X \models \varphi \}$$

LE First systematic study of d-semantics 01 All spaces ---> $wK4 = K + \Diamond \Diamond p \rightarrow p \lor \Diamond p$ (least) 01 T_d spaces ---> $K4 = K + \Diamond \Diamond p \rightarrow \Diamond p$ 81 Scattered spaces ---> $GL = K + \Box(\Box p \rightarrow p) \rightarrow \Box p$

DEFINITION

The key component of defining the forcing relation for a given valuation:

$$\begin{array}{l} x \models \Diamond \varphi \text{ iff } \forall U_x, \ \exists y \in U_x - \{x\}, \ y \models \varphi \quad \text{(Diamond version)} \\ x \models \Box \varphi \text{ iff } \exists U_x, \ \forall y \in U_x - \{x\}, \ y \models \varphi \quad \text{(Box version)} \end{array}$$

d-Logic of a class of spaces C:

$$L_d(\mathcal{C}) = \{ \varphi : \forall X \in \mathcal{C}, \ X \models \varphi \}$$

LE First systematic study of d-semantics

000

3

DEFINITION

The key component of defining the forcing relation for a given valuation:

$$\begin{array}{l} x \models \Diamond \varphi \text{ iff } \forall U_x, \ \exists y \in U_x - \{x\}, \ y \models \varphi \quad \text{(Diamond version)} \\ x \models \Box \varphi \text{ iff } \exists U_x, \ \forall y \in U_x - \{x\}, \ y \models \varphi \quad \text{(Box version)} \end{array}$$

d-Logic of a class of spaces C:

$$L_d(\mathcal{C}) = \{ \varphi : \forall X \in \mathcal{C}, \ X \models \varphi \}$$

LE First systematic study of d-semantics

SAC

臣

Theorem and Corollary (VS90)

T: $\mathbf{K4D} = \mathbf{K4} + \Diamond \top$ is the d-logic of any zero-dimensional separable dense-in-itself metrizable space.

C: **K4D** is the d-logic of both \mathbb{Q} and **C**.

Two Theorems (VS)

90 For any finite $n \ge 2$, $L_d(\mathbb{R}^n) = \mathsf{K4DG}_1 = \mathsf{K4D} + \mathsf{G}_1$ (where $\mathsf{G}_1 = \Box (\Box^+ p \lor \Box^+ \neg p) \to (\Box p \lor \Box \neg p)$). 2000's $L_d(\mathbb{R}) = \mathsf{K4DG}_2$.

RECENT RESULT

Theorem and Corollary (VS90)

- T: $\mathbf{K4D} = \mathbf{K4} + \Diamond \top$ is the d-logic of any zero-dimensional separable dense-in-itself metrizable space.
- C: **K4D** is the d-logic of both \mathbb{Q} and **C**.

Two Theorems (VS)

90 For any finite $n \ge 2$, $L_d(\mathbb{R}^n) = \mathsf{K4DG}_1 = \mathsf{K4D} + \mathsf{G}_1$ (where $\mathsf{G}_1 = \Box (\Box^+ p \lor \Box^+ \neg p) \to (\Box p \lor \Box \neg p)$). 2000's $L_d(\mathbb{R}) = \mathsf{K4DG}_2$.

RECENT RESULT

Theorem and Corollary (VS90)

- T: $\mathbf{K4D} = \mathbf{K4} + \Diamond \top$ is the d-logic of any zero-dimensional separable dense-in-itself metrizable space.
- C: **K4D** is the d-logic of both \mathbb{Q} and **C**.

Two Theorems (VS)

90 For any finite
$$n \ge 2$$
, $L_d(\mathbb{R}^n) = \mathsf{K4DG}_1 = \mathsf{K4D} + \mathsf{G}_1$
(where $\mathsf{G}_1 = \Box (\Box^+ p \lor \Box^+ \neg p) \to (\Box p \lor \Box \neg p)$).
2000's $L_d(\mathbb{R}) = \mathsf{K4DG}_2$.

RECENT RESULT

Theorem and Corollary (VS90)

- T: $\mathbf{K4D} = \mathbf{K4} + \Diamond \top$ is the d-logic of any zero-dimensional separable dense-in-itself metrizable space.
- C: **K4D** is the d-logic of both \mathbb{Q} and **C**.

Two Theorems (VS)

90 For any finite
$$n \ge 2$$
, $L_d(\mathbb{R}^n) = \mathsf{K4DG}_1 = \mathsf{K4D} + \mathsf{G}_1$
(where $\mathsf{G}_1 = \Box (\Box^+ p \lor \Box^+ \neg p) \to (\Box p \lor \Box \neg p)$).
2000's $L_d(\mathbb{R}) = \mathsf{K4DG}_2$.

RECENT RESULT

Theorem and Corollary (VS90)

- T: $\mathbf{K4D} = \mathbf{K4} + \Diamond \top$ is the d-logic of any zero-dimensional separable dense-in-itself metrizable space.
- C: **K4D** is the d-logic of both \mathbb{Q} and **C**.

Two Theorems (VS)

90 For any finite
$$n \ge 2$$
, $L_d(\mathbb{R}^n) = \mathsf{K4DG}_1 = \mathsf{K4D} + \mathsf{G}_1$
(where $\mathsf{G}_1 = \Box (\Box^+ p \lor \Box^+ \neg p) \to (\Box p \lor \Box \neg p)$).
2000's $L_d(\mathbb{R}) = \mathsf{K4DG}_2$.

RECENT RESULT

GOAL

Obtain a copy of ${\mathbb Q}$ that allows for 'easy' utilization of results for Kripke frames.

Process

- Define a dense strict linear order, <, without endpoints on the set of (finite) strings of nonzero integers, Σ.
- By Cantor's theorem, $(\Sigma, <)$ and \mathbb{Q} are (order-)isomorphic.
- **③** Equip Σ with the order topology, τ , induced by <. Recall a basis for τ is $\{(\sigma, \lambda) : \sigma, \lambda \in \Sigma\}$ where $(\sigma, \lambda) = \{\kappa \in \Sigma : \sigma < \kappa < \lambda\}.$

Theorem

GOAL

Obtain a copy of ${\mathbb Q}$ that allows for 'easy' utilization of results for Kripke frames.

PROCESS

- Define a dense strict linear order, <, without endpoints on the set of (finite) strings of nonzero integers, Σ.
- ② By Cantor's theorem, $(\Sigma,<)$ and $\mathbb Q$ are (order-)isomorphic.
- **③** Equip Σ with the order topology, τ , induced by <. Recall a basis for τ is $\{(\sigma, \lambda) : \sigma, \lambda \in \Sigma\}$ where $(\sigma, \lambda) = \{\kappa \in \Sigma : \sigma < \kappa < \lambda\}.$

Theorem

GOAL

Obtain a copy of ${\mathbb Q}$ that allows for 'easy' utilization of results for Kripke frames.

Process

- Define a dense strict linear order, <, without endpoints on the set of (finite) strings of nonzero integers, Σ.
- ${\small @ By Cantor's theorem, } (\Sigma,<) \text{ and } \mathbb{Q} \text{ are (order-)isomorphic.}$
- Equip Σ with the order topology, τ, induced by <. Recall a basis for τ is {(σ, λ) : σ, λ ∈ Σ} where (σ, λ) = {κ ∈ Σ : σ < κ < λ}.

Theorem

GOAL

Obtain a copy of ${\mathbb Q}$ that allows for 'easy' utilization of results for Kripke frames.

Process

- Define a dense strict linear order, <, without endpoints on the set of (finite) strings of nonzero integers, Σ.
- $\textcircled{O} \quad \text{By Cantor's theorem, } (\Sigma,<) \text{ and } \mathbb{Q} \text{ are (order-)isomorphic.}$
- Equip Σ with the order topology, τ, induced by <. Recall a basis for τ is {(σ, λ) : σ, λ ∈ Σ} where (σ, λ) = {κ ∈ Σ : σ < κ < λ}.

Theorem

GOAL

Obtain a copy of ${\mathbb Q}$ that allows for 'easy' utilization of results for Kripke frames.

PROCESS

- Define a dense strict linear order, <, without endpoints on the set of (finite) strings of nonzero integers, Σ.
- ${\small @ By Cantor's theorem, } (\Sigma,<) \text{ and } \mathbb{Q} \text{ are (order-)isomorphic.}$
- Equip Σ with the order topology, τ, induced by <. Recall a basis for τ is {(σ, λ) : σ, λ ∈ Σ} where (σ, λ) = {κ ∈ Σ : σ < κ < λ}.

Theorem

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

TRIANGLES IN THE LOWER HALF PLANE

Ordering Σ

Define < on Σ via the projection into \mathbb{R} as depicted below: $\sigma < \lambda$ iff $\pi(h(\sigma)) < \pi(h(\lambda))$ in \mathbb{R} .

Correct Maps

DEFINITION (BEG05)

A d-morphism is a function $f : X \to W$ from a space (X, τ) to a frame (W, R), such that $\forall A \subseteq W$:

$$d(f^{-1}(A)) = f^{-1}(R^{-1}(A)).$$

Theorem (BEG05)

An onto d-morphism preserves validity; equivalently reflects refutation.

 $X \models \varphi$ implies $(W, R) \models \varphi$.(Preserve Validity) $(W, R) \not\models \varphi$ implies $X \not\models \varphi$.(Reflect Refutation)

Correct Maps

DEFINITION (BEG05)

A d-morphism is a function $f : X \to W$ from a space (X, τ) to a frame (W, R), such that $\forall A \subseteq W$:

$$d(f^{-1}(A)) = f^{-1}(R^{-1}(A)).$$

THEOREM (BEG05)

An onto d-morphism preserves validity; equivalently reflects refutation.

$$\begin{array}{ll} X \models \varphi \text{ implies } (W, R) \models \varphi. & (\text{Preserve Validity}) \\ (W, R) \not\models \varphi \text{ implies } X \not\models \varphi. & (\text{Reflect Refutation}) \end{array}$$

Theorem

Let (W, R) be transitive, rooted and countable. There are $X \subseteq \Sigma$ and onto d-morphism $f : X \to W$. Hence, (W, R) is a d-morphic image of a subspace of \mathbb{Q} .

Corollary

Let C be a countable collection of countable rooted K4-frames, $\exists X \subseteq \mathbb{Q}$ so that $L_d(X) \subseteq L(C)$.

イロト 不得 トイヨト イヨト

э

Remark

When using this method to realize subspaces of \mathbb{Q} :

- Completeness always holds.
- Soundness must be checked.

Theorem

Let (W, R) be transitive, rooted and countable. There are $X \subseteq \Sigma$ and onto d-morphism $f : X \to W$. Hence, (W, R) is a d-morphic image of a subspace of \mathbb{Q} .

Corollary

Let C be a countable collection of countable rooted K4-frames, $\exists X \subseteq \mathbb{Q}$ so that $L_d(X) \subseteq L(C)$.

イロト 不得 トイヨト イヨト

-

Remark

When using this method to realize subspaces of \mathbb{Q} :

- Completeness always holds.
- Soundness must be checked.

Theorem

Let (W, R) be transitive, rooted and countable. There are $X \subseteq \Sigma$ and onto d-morphism $f : X \to W$. Hence, (W, R) is a d-morphic image of a subspace of \mathbb{Q} .

COROLLARY

Let C be a countable collection of countable rooted K4-frames, $\exists X \subseteq \mathbb{Q}$ so that $L_d(X) \subseteq L(C)$.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Remark

When using this method to realize subspaces of \mathbb{Q} :

- Completeness always holds.
- Soundness must be checked.

Theorem

Let (W, R) be transitive, rooted and countable. There are $X \subseteq \Sigma$ and onto d-morphism $f : X \to W$. Hence, (W, R) is a d-morphic image of a subspace of \mathbb{Q} .

COROLLARY

Let C be a countable collection of countable rooted K4-frames, $\exists X \subseteq \mathbb{Q}$ so that $L_d(X) \subseteq L(C)$.

Remark

When using this method to realize subspaces of \mathbb{Q} :

• Completeness always holds.

Soundness must be checked.
Countable Rooted ${\sf K4}\text{-}{\rm Frames}$

Theorem

Let (W, R) be transitive, rooted and countable. There are $X \subseteq \Sigma$ and onto d-morphism $f : X \to W$. Hence, (W, R) is a d-morphic image of a subspace of \mathbb{Q} .

COROLLARY

Let C be a countable collection of countable rooted K4-frames, $\exists X \subseteq \mathbb{Q}$ so that $L_d(X) \subseteq L(C)$.

Remark

When using this method to realize subspaces of \mathbb{Q} :

- Completeness always holds.
- Soundness must be checked.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

VARIABLE FREE FORMULAS

LEMMA Let: $X \text{ be } T_d$, (W, R) be K4-frame, $f : X \to W \text{ be onto d-morphism, and}$ $\varphi \text{ be a variable free formula (closed formula)}$. Then $X \not\models \varphi$ implies $(W, R) \not\models \varphi$; equivalently $(W, R) \models \varphi$ implies $X \models \varphi$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

VARIABLE FREE FORMULAS

LEMMA Let: $X \text{ be } T_d$, (W, R) be K4-frame, $f : X \to W$ be onto d-morphism, and φ be a variable free formula (closed formula). Then $X \not\models \varphi$ implies $(W, R) \not\models \varphi$; equivalently $(W, R) \models \varphi$ implies $X \models \varphi$.

Theorem

The following logics are the d-logic of some subspace of \mathbb{Q} .

0 K4

I containing K4 and axiomatized by variable free formulas

 $K4D = K4 + \Diamond \top$ $wGL = K4 + \Diamond^{+} \Box \bot$ $GL_{n} = K4 + \Box^{n} \bot$ $K4\Delta_{n} = K4 + \Box^{n} \Diamond \top$ $K4\Xi_{n} = K4 + \Diamond^{n} \Box \bot \rightarrow \Diamond \neg \Diamond^{+} \Box \bot$

(a) Arbitrary intersection of logics extending K4 by variable free formulas; e.g. $\mathbf{GL} = \bigcap \mathbf{GL}_n$, $\bigcap \mathbf{K4\Delta}_n$, $\bigcap \mathbf{K4\Xi}_n$

Theorem

The following logics are the d-logic of some subspace of \mathbb{Q} .

- 0 K4
- 2 L containing K4 and axiomatized by variable free formulas

 $K4D = K4 + \Diamond \top$ $wGL = K4 + \Diamond^{+} \Box \bot$ $GL_{n} = K4 + \Box^{n} \bot$ $K4\Delta_{n} = K4 + \Box^{n} \Diamond \top$ $K4\Xi_{n} = K4 + \Diamond^{n} \Box \bot \rightarrow \Diamond \neg \Diamond^{+} \Box \bot$

ⓐ Arbitrary intersection of logics extending K4 by variable free formulas; e.g. $\mathbf{GL} = \bigcap \mathbf{GL}_n$, $\bigcap \mathbf{K4\Delta}_n$, $\bigcap \mathbf{K4\Xi}_n$

Theorem

The following logics are the d-logic of some subspace of \mathbb{Q} .

0 K4

2 L containing K4 and axiomatized by variable free formulas

 $K4D = K4 + \Diamond \top$ wGL = K4 + $\Diamond^+ \Box \bot$ GL_n = K4 + $\Box^n \bot$ K4 Δ_n = K4 + $\Box^n \Diamond \top$ K4 Ξ_n = K4 + $\Diamond^n \Box \bot \rightarrow \Diamond \neg \Diamond^+ \Box \bot$

O Arbitrary intersection of logics extending K4 by variable free formulas; e.g. GL = ∩ GL_n, ∩ K4∆_n, ∩ K4Ξ_n

Theorem

The following logics are the d-logic of some subspace of \mathbb{Q} .

0 K4

2 L containing K4 and axiomatized by variable free formulas

 $K4D = K4 + \Diamond \top$ $wGL = K4 + \Diamond^{+} \Box \bot$ $GL_{n} = K4 + \Box^{n} \bot$ $K4\Delta_{n} = K4 + \Box^{n} \Diamond \top$ $K4\Xi_{n} = K4 + \Diamond^{n} \Box \bot \rightarrow \Diamond \neg \Diamond^{+} \Box \bot$

O Arbitrary intersection of logics extending K4 by variable free formulas; e.g. GL = ∩ GL_n, ∩ K4∆_n, ∩ K4Ξ_n

Theorem

The following logics are the d-logic of some subspace of \mathbb{Q} .

0 K4

2 L containing K4 and axiomatized by variable free formulas

 $K4D = K4 + \Diamond \top$ $wGL = K4 + \Diamond^{+} \Box \bot$ $GL_{n} = K4 + \Box^{n} \bot$ $K4\Delta_{n} = K4 + \Box^{n} \Diamond \top$ $K4\Xi_{n} = K4 + \Diamond^{n} \Box \bot \rightarrow \Diamond \neg \Diamond^{+} \Box \bot$

O Arbitrary intersection of logics extending K4 by variable free formulas; e.g. GL = ∩ GL_n, ∩ K4∆_n, ∩ K4Ξ_n

Theorem

The following logics are the d-logic of some subspace of \mathbb{Q} .

0 K4

2 L containing K4 and axiomatized by variable free formulas

 $K4D = K4 + \Diamond \top$ $wGL = K4 + \Diamond^{+} \Box \bot$ $GL_{n} = K4 + \Box^{n} \bot$ $K4\Delta_{n} = K4 + \Box^{n} \Diamond \top$ $K4\Xi_{n} = K4 + \Diamond^{n} \Box \bot \rightarrow \Diamond \neg \Diamond^{+} \Box \bot$

• Arbitrary intersection of logics extending K4 by variable free formulas; e.g. $\mathbf{GL} = \bigcap \mathbf{GL}_n$, $\bigcap \mathbf{K4\Delta}_n$, $\bigcap \mathbf{K4\Xi}_n$

MAIN RESULTS

- **(**) Subspaces of \mathbb{Q} give rise to continuum many d-logics over K4.
- There exist continuum many d-logics of subspaces of Q that are not finitely axiomatizable.
- There exist continuum many d-logics of subspaces of Q that are not decidable.
- There exist continuum many d-logics of subspaces of Q that do not have the FMP.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

MAIN RESULTS

- $\textbf{O} \ \ Subspaces \ of \ \mathbb{Q} \ \ give \ rise \ to \ continuum \ many \ d-logics \ over \ K4.$
- There exist continuum many d-logics of subspaces of Q that are not finitely axiomatizable.
- There exist continuum many d-logics of subspaces of Q that are not decidable.
- There exist continuum many d-logics of subspaces of Q that do not have the FMP.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

MAIN RESULTS

- $\textbf{O} \ \ Subspaces \ of \ \mathbb{Q} \ \ give \ rise \ to \ continuum \ many \ d-logics \ over \ K4.$
- There exist continuum many d-logics of subspaces of Q that are not finitely axiomatizable.
- There exist continuum many d-logics of subspaces of Q that are not decidable.
- There exist continuum many d-logics of subspaces of Q that do not have the FMP.

MAIN RESULTS

- $\textbf{O} \ \ Subspaces \ of \ \mathbb{Q} \ \ give \ rise \ to \ continuum \ many \ d-logics \ over \ K4.$
- There exist continuum many d-logics of subspaces of Q that are not finitely axiomatizable.
- There exist continuum many d-logics of subspaces of Q that are not decidable.
- There exist continuum many d-logics of subspaces of Q that do not have the FMP.

Recall

 X is scattered if every nonempty subspace has an isolated point.

• X is scattered iff $\exists \alpha, d^{\alpha}(X) = \emptyset$.

• If X is scattered then the isolated points, Iso(X), are dense.

2
$$\mathbf{GL}_n = \mathbf{K4} + \Box^n \bot$$

③
$$\mathbf{GL} = \bigcap \mathbf{GL}_n$$
, so...
∃ $X \subseteq \mathbb{Q}, \ L_d(X) = \mathbf{GL}$ and $X \cong \omega^{\omega}$

Recall

 X is scattered if every nonempty subspace has an isolated point.

- X is scattered iff $\exists \alpha, d^{\alpha}(X) = \emptyset$.
- If X is scattered then the isolated points, Iso(X), are dense.

$I GL_n = K4 + \Box^n \bot$

③
$$\mathbf{GL} = \bigcap \mathbf{GL}_n$$
, so...
∃ $X \subseteq \mathbb{Q}$, $L_d(X) = \mathbf{GL}$ and $X \cong \omega^{\omega}$

Recall

- X is scattered if every nonempty subspace has an isolated point.
 - X is scattered iff $\exists \alpha, d^{\alpha}(X) = \emptyset$.
 - If X is scattered then the isolated points, Iso(X), are dense.

2
$$\operatorname{GL}_n = \operatorname{K4} + \Box^n \bot$$

3
$$\mathbf{GL} = \bigcap \mathbf{GL}_n$$
, so...
 $\exists X \subseteq \mathbb{Q}, \ L_d(X) = \mathbf{GL} \text{ and } X \cong \omega^{\omega}$

Recall

- X is scattered if every nonempty subspace has an isolated point.
 - X is scattered iff $\exists \alpha, d^{\alpha}(X) = \emptyset$.
 - If X is scattered then the isolated points, Iso(X), are dense.

2
$$\operatorname{GL}_n = \operatorname{K4} + \Box^n \bot$$

3
$$\mathbf{GL} = \bigcap \mathbf{GL}_n$$
, so...
 $\exists X \subseteq \mathbb{Q}, \ L_d(X) = \mathbf{GL} \text{ and } X \cong \omega^{\omega}$

Recall

- X is scattered if every nonempty subspace has an isolated point.
 - X is scattered iff $\exists \alpha, d^{\alpha}(X) = \emptyset$.
 - If X is scattered then the isolated points, Iso(X), are dense.

2
$$\operatorname{GL}_n = \operatorname{K4} + \Box^n \bot$$

$$\mathbf{GL} = \bigcap \mathbf{GL}_n, \text{ so...} \\ \exists X \subseteq \mathbb{Q}, \ L_d(X) = \mathbf{GL} \text{ and } X \cong \omega^{\omega}$$

WEAKLY SCATTERED SPACES AND wGL

DEFINITION

- A T_d space X is weakly scattered if Iso(X) is dense; i.e. $\overline{Iso(X)} = X$. E.g. $\beta(\mathbb{N})$.
- wGL = K4 + $\Diamond^+\Box \bot$

Results

 $wGL \subsetneq GL$.

 $X \models \Diamond^{+} \Box \bot \text{ iff } X \text{ is weakly scattered.}$ For finite (W, R): $(W, R) \models \Diamond^{+} \Box \bot \text{ iff } (R^{+})^{-1}(\max W) = W$ iff $\max W = \max W.$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ● ● ● ●

Weakly Scattered Spaces and wGL

DEFINITION

• A T_d space X is weakly scattered if Iso(X) is dense; i.e. $\overline{Iso(X)} = X$. E.g. $\beta(\mathbb{N})$.

• wGL = K4 + $\Diamond^+\Box \bot$.

Results

 $wGL \subsetneq GL$.

 $X \models \Diamond^{+} \Box \bot \text{ iff } X \text{ is weakly scattered.}$ For finite (W, R): $(W, R) \models \Diamond^{+} \Box \bot \text{ iff } (R^{+})^{-1}(\max W) = W$ iff $\max W = \max W.$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ● ● ● ●

Weakly Scattered Spaces and wGL

DEFINITION

• A T_d space X is weakly scattered if Iso(X) is dense; i.e. $\overline{Iso(X)} = X$. E.g. $\beta(\mathbb{N})$.

• wGL = K4 +
$$\diamond^+\Box \bot$$
.

RESULTS

 $\mathsf{wGL} \subsetneq \mathsf{GL}$

 $X \models \Diamond^{+} \Box \bot \text{ iff } X \text{ is weakly scattered.}$ For finite (W, R): $(W, R) \models \Diamond^{+} \Box \bot \text{ iff } (R^{+})^{-1}(\max W) = W$ iff $\max W = \max W.$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ● ● ● ●

WEAKLY SCATTERED SPACES AND wGL

DEFINITION

• A T_d space X is weakly scattered if Iso(X) is dense; i.e. $\overline{Iso(X)} = X$. E.g. $\beta(\mathbb{N})$.

• wGL = K4 +
$$\diamond^+\Box \bot$$
.

Results

 $\mathsf{wGL} \subsetneq \mathsf{GL}.$

 $X \models \Diamond^{+} \Box \bot \text{ iff } X \text{ is weakly scattered.}$ finite (W, R): $(W, R) \models \Diamond^{+} \Box \bot \text{ iff } (R^{+})^{-1}(\max W) = W$ iff $\max W = \max W.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

WEAKLY SCATTERED SPACES AND wGL

DEFINITION

• A T_d space X is weakly scattered if Iso(X) is dense; i.e. $\overline{Iso(X)} = X$. E.g. $\beta(\mathbb{N})$.

• wGL = K4 +
$$\diamond^+\Box \bot$$
.

Results

 $\mathsf{wGL} \subsetneq \mathsf{GL}.$

 $X \models \Diamond^{+} \Box \bot \text{ iff } X \text{ is weakly scattered.}$ For finite (W, R): $(W, R) \models \Diamond^{+} \Box \bot \text{ iff } (R^{+})^{-1}(\max W) = W$ iff $\max W = \max W.$

DEFINITION

 A T_d space X is quasi-scattered provided IsoX is scattered.
qgl = □ (□ (p ∨ □+◊⊤) → (p ∨ □+◊⊤)) → □ (p ∨ □+◊⊤) qGL = K4 + qgl

- $X \models \mathbf{qgl}$ iff X is quasi-scattered.
- $X \models \Box^n \Diamond \top \text{ iff } d^n(\operatorname{Iso} X) = \emptyset (\overline{\operatorname{Iso} X} \text{ is } n \text{-scattered}).$
- $\mathbf{qGL} = \bigcap \mathbf{K4\Delta}_n$ (Recall $\mathbf{K4\Delta}_n = \mathbf{K4} + \Box^n \Diamond \top$); so ... \mathbf{qGL} is the d-logic of a subspace of \mathbb{Q} .
- A finite frame $(W, R) \models \mathbf{qgl}$ iff $(R^+)^{-1}(\max W)$ is irreflexive.

DEFINITION

- A T_d space X is quasi-scattered provided $\overline{\text{Iso}X}$ is scattered.
- $\operatorname{qgl} = \Box \left(\Box \left(p \lor \Box^+ \Diamond \top \right) \to \left(p \lor \Box^+ \Diamond \top \right) \right) \to \Box \left(p \lor \Box^+ \Diamond \top \right)$ $\operatorname{qGL} = \operatorname{K4} + \operatorname{qgl}$

- $X \models \mathbf{qgl}$ iff X is quasi-scattered.
- $X \models \Box^n \Diamond \top \text{ iff } d^n(\operatorname{Iso} X) = \varnothing (\overline{\operatorname{Iso} X} \text{ is } n \text{-scattered}).$
- $\mathbf{qGL} = \bigcap \mathbf{K4\Delta}_n$ (Recall $\mathbf{K4\Delta}_n = \mathbf{K4} + \Box^n \Diamond \top$); so ... \mathbf{qGL} is the d-logic of a subspace of \mathbb{Q} .
- A finite frame $(W, R) \models \mathbf{qgl}$ iff $(R^+)^{-1}(\max W)$ is irreflexive.

DEFINITION

- A T_d space X is quasi-scattered provided $\overline{\text{Iso}X}$ is scattered.
- $\operatorname{qgl} = \Box \left(\Box \left(p \lor \Box^+ \Diamond \top \right) \to \left(p \lor \Box^+ \Diamond \top \right) \right) \to \Box \left(p \lor \Box^+ \Diamond \top \right)$ $\operatorname{qGL} = \operatorname{K4} + \operatorname{qgl}$

1
$$X \models \mathbf{qgl}$$
 iff X is quasi-scattered.

- $@ X \models \Box^n \Diamond \top \text{ iff } d^n(\operatorname{Iso} X) = \varnothing (\overline{\operatorname{Iso} X} \text{ is } n\text{-scattered}).$
- ③ **qGL** = \bigcap **K4** Δ_n (Recall **K4** Δ_n = **K4** + \square^n ♢ \top); so ... **qGL** is the d-logic of a subspace of \square .
- A finite frame $(W, R) \models \mathbf{qgl}$ iff $(R^+)^{-1}(\max W)$ is irreflexive.

DEFINITION

- A T_d space X is quasi-scattered provided \overline{IsoX} is scattered.
- $\operatorname{qgl} = \Box \left(\Box \left(p \lor \Box^+ \Diamond \top \right) \to \left(p \lor \Box^+ \Diamond \top \right) \right) \to \Box \left(p \lor \Box^+ \Diamond \top \right)$ $\operatorname{qGL} = \operatorname{K4} + \operatorname{qgl}$

1
$$X \models \mathbf{qgl}$$
 iff X is quasi-scattered.

- $X \models \Box^n \Diamond \top \text{ iff } d^n(\operatorname{Iso} X) = \emptyset \ (\overline{\operatorname{Iso} X} \text{ is } n \text{-scattered}).$
- $\mathbf{qGL} = \bigcap \mathbf{K4\Delta}_n$ (Recall $\mathbf{K4\Delta}_n = \mathbf{K4} + \Box^n \Diamond \top$); so ... \mathbf{qGL} is the d-logic of a subspace of \mathbb{Q} .
- A finite frame $(W, R) \models \mathbf{qgl}$ iff $(R^+)^{-1}(\max W)$ is irreflexive.

DEFINITION

- A T_d space X is quasi-scattered provided $\overline{\text{Iso}X}$ is scattered.
- $\operatorname{qgl} = \Box \left(\Box \left(p \lor \Box^+ \Diamond \top \right) \to \left(p \lor \Box^+ \Diamond \top \right) \right) \to \Box \left(p \lor \Box^+ \Diamond \top \right)$ $\operatorname{qGL} = \operatorname{K4} + \operatorname{qgl}$

Theorem

- $X \models \mathbf{qgl}$ iff X is quasi-scattered.
- $X \models \Box^n \Diamond \top \text{ iff } d^n(\operatorname{Iso} X) = \emptyset \ (\overline{\operatorname{Iso} X} \text{ is } n \text{-scattered}).$
- **3** qGL = $\bigcap K4\Delta_n$ (Recall $K4\Delta_n = K4 + \Box^n \Diamond \top$);

so ... \mathbf{qGL} is the d-logic of a subspace of \mathbb{Q} .

• A finite frame $(W, R) \models \mathbf{qgl}$ iff $(R^+)^{-1}(\max W)$ is irreflexive.

DEFINITION

- A T_d space X is quasi-scattered provided \overline{IsoX} is scattered.
- $qgl = \Box (\Box (p \lor \Box^+ \Diamond \top) \to (p \lor \Box^+ \Diamond \top)) \to \Box (p \lor \Box^+ \Diamond \top)$ qGL = K4 + qgl

Theorem

- $X \models \mathbf{qgl}$ iff X is quasi-scattered.
- $X \models \Box^n \Diamond \top \text{ iff } d^n(\operatorname{Iso} X) = \emptyset \ (\overline{\operatorname{Iso} X} \text{ is } n \text{-scattered}).$
- **3** qGL = $\bigcap K4\Delta_n$ (Recall $K4\Delta_n = K4 + \Box^n \Diamond \top$);

so ... \mathbf{qGL} is the d-logic of a subspace of \mathbb{Q} .

A finite frame $(W, R) \models \mathbf{qgl}$ iff $(R^+)^{-1}(\max W)$ is irreflexive.

DEFINITION

- A T_d space X is quasi-scattered provided $\overline{\text{Iso}X}$ is scattered.
- $\operatorname{qgl} = \Box \left(\Box \left(p \lor \Box^+ \Diamond \top \right) \to \left(p \lor \Box^+ \Diamond \top \right) \right) \to \Box \left(p \lor \Box^+ \Diamond \top \right)$ $\operatorname{qGL} = \operatorname{K4} + \operatorname{qgl}$

Theorem

1
$$X \models \mathbf{qgl}$$
 iff X is quasi-scattered.

- $X \models \Box^n \Diamond \top \text{ iff } d^n(\operatorname{Iso} X) = \emptyset \ (\overline{\operatorname{Iso} X} \text{ is } n \text{-scattered}).$
- $\mathbf{qGL} = \bigcap \mathbf{K4\Delta}_n (\text{Recall } \mathbf{K4\Delta}_n = \mathbf{K4} + \Box^n \Diamond \top);$

so ... \mathbf{qGL} is the d-logic of a subspace of \mathbb{Q} .

• A finite frame $(W, R) \models \mathbf{qgl}$ iff $(R^+)^{-1}(\max W)$ is irreflexive.
DEFINITION

- A T_d space X is semi-scattered when $int(\overline{IsoX})$ is scattered.
- $\operatorname{sgl} = \Box (\Box (p \lor \chi) \to (p \lor \chi)) \to \Box (p \lor \chi) \lor \chi$ where $\chi = \Diamond^+ \Box^+ \Diamond^\top$ and $\operatorname{sGL} = \operatorname{K4} + \operatorname{sgl}$

- $X \models$ sgl iff X is semi-scattered.
- $sGL = \bigcap K4\Xi_n$ (Recall $K4\Xi_n = K4 + \Diamond^n \Box \bot \rightarrow \Diamond \neg \Diamond^+ \Box \bot$); so ... sGL is the d-logic of a subspace of \mathbb{Q} .
- A finite frame (W, R) ⊨ sgl iff (R⁺)⁻¹(imaxW) - R⁻¹(rmaxW) is irreflexive.

DEFINITION

- A T_d space X is semi-scattered when int(IsoX) is scattered.
- $\operatorname{sgl} = \Box (\Box(p \lor \chi) \to (p \lor \chi)) \to \Box(p \lor \chi) \lor \chi$ where $\chi = \Diamond^+ \Box^+ \Diamond^\top$ and $\operatorname{sGL} = \operatorname{K4} + \operatorname{sgl}$

•
$$X \models$$
sgl iff X is semi-scattered.

- $sGL = \bigcap K4\Xi_n$ (Recall $K4\Xi_n = K4 + \Diamond^n \Box \bot \rightarrow \Diamond \neg \Diamond^+ \Box \bot$); so ... sGL is the d-logic of a subspace of \mathbb{Q} .
- A finite frame (W, R) ⊨ sgl iff (R⁺)⁻¹(imaxW) - R⁻¹(rmaxW) is irreflexive.

DEFINITION

- A T_d space X is semi-scattered when int(IsoX) is scattered.
- $\operatorname{sgl} = \Box (\Box(p \lor \chi) \to (p \lor \chi)) \to \Box(p \lor \chi) \lor \chi$ where $\chi = \Diamond^+ \Box^+ \Diamond^\top$ and $\operatorname{sGL} = \operatorname{K4} + \operatorname{sgl}$

- $sGL = \bigcap K4\Xi_n$ (Recall $K4\Xi_n = K4 + \Diamond^n \Box \bot \rightarrow \Diamond \neg \Diamond^+ \Box \bot$); so ... sGL is the d-logic of a subspace of \mathbb{Q} .
- A finite frame (W, R) ⊨ sgl iff (R⁺)⁻¹(imaxW) - R⁻¹(rmaxW) is irreflexive.

DEFINITION

• A T_d space X is semi-scattered when $int(\overline{IsoX})$ is scattered.

•
$$\operatorname{sgl} = \Box (\Box(p \lor \chi) \to (p \lor \chi)) \to \Box(p \lor \chi) \lor \chi$$
 where $\chi = \Diamond^+ \Box^+ \Diamond^\top$ and $\operatorname{sGL} = \operatorname{K4} + \operatorname{sgl}$

Theorem

- $@ X \models \Diamond^n \Box \bot \to \Diamond \neg \Diamond^+ \Box \bot \text{ iff } d^n(\operatorname{Iso} X) \subseteq d(X \overline{\operatorname{Iso} X}).$
- SGL = ∩ K4Ξ_n (Recall K4Ξ_n = K4 + ◊ⁿ□⊥ → ◊¬◊⁺□⊥); so ... sGL is the d-logic of a subspace of Q.

A finite frame (W, R) ⊨ sgl iff (R⁺)⁻¹(imaxW) − R⁻¹(rmaxW) is irreflexive.

DEFINITION

• A T_d space X is semi-scattered when $int(\overline{IsoX})$ is scattered.

•
$$\operatorname{sgl} = \Box (\Box(p \lor \chi) \to (p \lor \chi)) \to \Box(p \lor \chi) \lor \chi$$
 where $\chi = \Diamond^+ \Box^+ \Diamond^\top$ and $\operatorname{sGL} = \operatorname{K4} + \operatorname{sgl}$

•
$$X \models \mathbf{sgl}$$
 iff X is semi-scattered.

- ③ $sGL = \bigcap K4\Xi_n$ (Recall $K4\Xi_n = K4 + \Diamond^n \Box \bot \rightarrow \Diamond \neg \Diamond^+ \Box \bot$); so ... sGL is the d-logic of a subspace of \mathbb{Q} .
- A finite frame (W, R) ⊨ sgl iff (R⁺)⁻¹(imaxW) − R⁻¹(rmaxW) is irreflexive.

DEFINITION

• A T_d space X is semi-scattered when $int(\overline{IsoX})$ is scattered.

•
$$\operatorname{sgl} = \Box (\Box(p \lor \chi) \to (p \lor \chi)) \to \Box(p \lor \chi) \lor \chi$$
 where $\chi = \Diamond^+ \Box^+ \Diamond^\top$ and $\operatorname{sGL} = \operatorname{K4} + \operatorname{sgl}$

Theorem

1
$$X \models \mathbf{sgl}$$
 iff X is semi-scattered.

- **3** sGL = ∩ K4Ξ_n (Recall K4Ξ_n = K4 + $\Diamond^n \Box \bot \rightarrow \Diamond \neg \Diamond^+ \Box \bot$); so ... sGL is the d-logic of a subspace of \mathbb{Q} .

A finite frame (W, R) ⊨ sgl iff (R⁺)⁻¹(imaxW) − R⁻¹(rmaxW) is irreflexive.

DEFINITION

• A T_d space X is semi-scattered when $int(\overline{IsoX})$ is scattered.

•
$$\operatorname{sgl} = \Box (\Box(p \lor \chi) \to (p \lor \chi)) \to \Box(p \lor \chi) \lor \chi$$
 where $\chi = \Diamond^+ \Box^+ \Diamond^\top$ and $\operatorname{sGL} = \operatorname{K4} + \operatorname{sgl}$

Theorem

•
$$X \models \mathbf{sgl}$$
 iff X is semi-scattered.

- sGL = \bigcap K4Ξ_n (Recall K4Ξ_n = K4 + $\Diamond^n \Box \bot \rightarrow \Diamond \neg \Diamond^+ \Box \bot$); so ... sGL is the d-logic of a subspace of \mathbb{Q} .

A finite frame (W, R) ⊨ sgl iff (R⁺)⁻¹(imaxW) − R⁻¹(rmaxW) is irreflexive.

DEFINITION

• A T_d space X is semi-scattered when $int(\overline{IsoX})$ is scattered.

•
$$\operatorname{sgl} = \Box (\Box(p \lor \chi) \to (p \lor \chi)) \to \Box(p \lor \chi) \lor \chi$$
 where $\chi = \Diamond^+ \Box^+ \Diamond^\top$ and $\operatorname{sGL} = \operatorname{K4} + \operatorname{sgl}$

)
$$X \models \mathbf{sgl}$$
 iff X is semi-scattered.

- $sGL = \bigcap K4\Xi_n$ (Recall $K4\Xi_n = K4 + \Diamond^n \Box \bot \rightarrow \Diamond \neg \Diamond^+ \Box \bot$); so ... sGL is the d-logic of a subspace of \mathbb{Q} .
- A finite frame (W, R) ⊨ sgl iff (R⁺)⁻¹(imaxW) - R⁻¹(rmaxW) is irreflexive.

Two Forks Separate $\mathsf{GL},$ $\mathsf{wGL},$ $\mathsf{qGL},$ sGL and $\mathsf{K4D}$

A picture says it all ...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

|▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ | ≣ | 釣��

|▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ | ≣ | 釣��

FINITE MODEL PROPERTY

DEFINITION (RECALL)

A logic **L** has the finite model property (FMP) provided any nontheorem φ of **L** is refuted on some finite **L**-frame \mathfrak{F}_{φ} .

Theorem (CZ97)

 $L(\mathfrak{G})$ does not have the FMP.

Put
$$\alpha_i = \Box^{i+1} \bot \land \Diamond^i \top$$

 $n \models \alpha_i \text{ iff } n = i$
 $\mathfrak{G} \models \neg \mathbf{gl} \land \Diamond \alpha_i \rightarrow \neg \mathbf{gl} \land \Diamond \alpha_{i+1}$
Only $\omega \not\models \mathbf{gl}$

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 臣 … のへで

FINITE MODEL PROPERTY

DEFINITION (RECALL)

A logic **L** has the finite model property (FMP) provided any nontheorem φ of **L** is refuted on some finite **L**-frame \mathfrak{F}_{φ} .

THEOREM (CZ97)

 $L(\mathfrak{G})$ does not have the FMP.

0

2 3

ω

G

Put
$$\alpha_i = \Box^{i+1} \bot \land \Diamond^i \top$$

 $n \models \alpha_i \text{ iff } n = i$
 $\mathfrak{G} \models \neg \mathbf{gl} \land \Diamond \alpha_i \to \neg \mathbf{gl} \land \Diamond \alpha_{i+1}$
 \vdots Only $\omega \not\models \mathbf{gl}$

An Interval of Logics Without FMP

THEOREM (CZ97)

$$L_0 = \mathbf{K4} + \{\neg \mathbf{gl} \land \Diamond \alpha_i \to \neg \mathbf{gl} \land \Diamond \alpha_{i+1} : i \in \omega\}$$

$$I = [L_0, L(\mathfrak{G})]$$

イロト 不得 トイヨト イヨト

э.

- No $L \in I$ has the FMP.
- I is uncountable.
- ③ Infinitely many $L \in I$ are finitely axiomatizable.

APPLY CONSTRUCTION

Apply construction to \mathfrak{G} to build $X \subseteq \mathbb{Q}$.

An Interval of Logics Without FMP

THEOREM (CZ97)

$$L_0 = \mathbf{K4} + \{\neg \mathbf{gl} \land \Diamond \alpha_i \to \neg \mathbf{gl} \land \Diamond \alpha_{i+1} : i \in \omega\}$$

$$I = [L_0, L(\mathfrak{G})]$$

・ロト ・ 一 ト ・ モト ・ モト

э.

- No $L \in I$ has the FMP.
- I is uncountable.
- Infinitely many $L \in I$ are finitely axiomatizable.

APPLY CONSTRUCTION

Apply construction to \mathfrak{G} to build $X \subseteq \mathbb{Q}$.

An Interval of Logics Without FMP

THEOREM (CZ97)

$$L_0 = \mathbf{K4} + \{\neg \mathbf{gl} \land \Diamond \alpha_i \to \neg \mathbf{gl} \land \Diamond \alpha_{i+1} : i \in \omega\}$$

$$I = [L_0, L(\mathfrak{G})]$$

- No $L \in I$ has the FMP.
- I is uncountable.
- Infinitely many $L \in I$ are finitely axiomatizable.

APPLY CONSTRUCTION

Apply construction to \mathfrak{G} to build $X \subseteq \mathbb{Q}$.

A D-LOGIC WITHOUT FMP

THEOREM $L_d(X) \in I$ and so ... $L_d(X)$ does not have the FMP. Iso(X)Iso(dX) $X \subseteq \mathbb{Q}$ $Iso(d^2X)$ built from & $Iso(d^3X)$: D (dii) Х

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

A D-LOGIC WITHOUT FMP

Theorem

 $L_d(X) \in I$ and so ... $L_d(X)$ does not have the FMP.

$\operatorname{Iso}(X)$		
$\operatorname{Iso}(dX)$		
$\operatorname{Iso}(d^2X)$		$X\subseteq \mathbb{Q}$
$\operatorname{Iso}(d^3X)$		built from \mathfrak{G}
	÷	
D (uii)	X	

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

A MOTIVATING FRAME

Add two points to \mathfrak{G} :

USING **sgl**: Another Interval of Logics Without FMP

THEOREM

$$L_1 = \mathbf{K4} + \{\neg \mathbf{sgl} \land \Diamond \alpha_i \to \neg \mathbf{sgl} \land \Diamond \alpha_{i+1} : i \in \omega\}$$

$$J = [L_1, L(\mathfrak{G})]$$

- No $L \in J$ has the FMP.
- J is uncountable.
- ③ Infinitely many $L \in J$ are finitely axiomatizable.
USING **sgl**: Another Interval of Logics Without FMP

THEOREM

$$L_1 = \mathbf{K4} + \{\neg \mathbf{sgl} \land \Diamond \alpha_i \to \neg \mathbf{sgl} \land \Diamond \alpha_{i+1} : i \in \omega\}$$

$$J = [L_1, L(\mathfrak{G})]$$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- No $L \in J$ has the FMP.
- J is uncountable.
- **③** Infinitely many $L \in J$ are finitely axiomatizable.

A Family of Frames \mathfrak{H}_{γ}

Theorem

 $L(\mathfrak{H}_{\gamma}) \in J$ and so ... $L(\mathfrak{H}_{\gamma})$ does not have the FMP.

A Family of Frames \mathfrak{H}_{γ}

Theorem

 $L(\mathfrak{H}_{\gamma}) \in J$ and so ... $L(\mathfrak{H}_{\gamma})$ does not have the FMP.

APPLY CONSTRUCTION

Build $X_{\gamma} \subseteq \mathbb{Q}$ from \mathfrak{H}_{γ} .

Theorem

 $L_d(X_\gamma) \in J$ and so ... $L_d(X_\gamma)$ does not have the FMP.

Since $L_d(X_{\gamma}) \neq L_d(X_{\delta})$ for distinct $\gamma, \delta \subseteq \omega$...

THEOREM (RECALL)

There exist continuum many d-logics of subspaces of $\mathbb Q$ that do not have the FMP.

APPLY CONSTRUCTION

Build $X_{\gamma} \subseteq \mathbb{Q}$ from \mathfrak{H}_{γ} .

Theorem

 $L_d(X_{\gamma}) \in J$ and so ... $L_d(X_{\gamma})$ does not have the FMP.

Since $L_d(X_{\gamma}) \neq L_d(X_{\delta})$ for distinct $\gamma, \delta \subseteq \omega$...

THEOREM (RECALL)

There exist continuum many d-logics of subspaces of ${\mathbb Q}$ that do not have the FMP.

APPLY CONSTRUCTION

Build $X_{\gamma} \subseteq \mathbb{Q}$ from \mathfrak{H}_{γ} .

Theorem

 $L_d(X_\gamma) \in J$ and so ... $L_d(X_\gamma)$ does not have the FMP.

Since $L_d(X_{\gamma}) \neq L_d(X_{\delta})$ for distinct $\gamma, \delta \subseteq \omega$...

Theorem (Recall)

There exist continuum many d-logics of subspaces of ${\mathbb Q}$ that do not have the FMP.

APPLY CONSTRUCTION

Build $X_{\gamma} \subseteq \mathbb{Q}$ from \mathfrak{H}_{γ} .

Theorem

 $L_d(X_\gamma) \in J$ and so ... $L_d(X_\gamma)$ does not have the FMP.

Since $L_d(X_{\gamma}) \neq L_d(X_{\delta})$ for distinct $\gamma, \delta \subseteq \omega$...

THEOREM (RECALL)

There exist continuum many d-logics of subspaces of ${\mathbb Q}$ that do not have the FMP.

APPLY CONSTRUCTION

Build $X_{\gamma} \subseteq \mathbb{Q}$ from \mathfrak{H}_{γ} .

Theorem

 $L_d(X_\gamma) \in J$ and so ... $L_d(X_\gamma)$ does not have the FMP.

Since $L_d(X_{\gamma}) \neq L_d(X_{\delta})$ for distinct $\gamma, \delta \subseteq \omega$...

THEOREM (RECALL)

There exist continuum many d-logics of subspaces of ${\mathbb Q}$ that do not have the FMP.

The End

Thanks for your attention! and Thanks to the organizers!

- G. Bezhanishvili and J. Lucero-Bryan, 'More on d-logics of subspaces of the rational numbers', *Notre Dame Journal of Formal Logic*, 53 (2012), 3, 319-345.
- G. Bezhanishvili and J. Lucero-Bryan, 'Subspaces of Q whose d-logics do not have the FMP', Arch. Math. Logic, 51 (2012), 5, 661-670.

The End

Thanks for your attention! and Thanks to the organizers!

- G. Bezhanishvili and J. Lucero-Bryan, 'More on d-logics of subspaces of the rational numbers', *Notre Dame Journal of Formal Logic*, 53 (2012), 3, 319-345.
- G. Bezhanishvili and J. Lucero-Bryan, 'Subspaces of Q whose d-logics do not have the FMP', Arch. Math. Logic, 51 (2012), 5, 661-670.