▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

A Brief Introduction to Topological Semantics for Modal Logic

Joel G. Lucero-Bryan Khalifa University of Science, Research and Technology joel.lucero-bryan@kustar.ac.ae

TOLO3, Tbilisi, Georgia

Why Modal Logic

SIMPLICITY

Simple extension of classical propositional logic by

 \Box and \Diamond

Expressivity: many interpretations of \Box / \Diamond

- Necessity/Possibility
- Obligation/Permission
- 6 Kripke or relational frames
- Oescriptive frames
- Algebraic
- Interpological

Why Modal Logic

SIMPLICITY

Simple extension of classical propositional logic by

 \Box and \Diamond

Expressivity: many interpretations of \Box / \Diamond

- Necessity/Possibility
- Obligation/Permission
- Kripke or relational frames
- Descriptive frames
- Algebraic
- Topological

MODAL LOGIC LANGUAGE AND WELL FORMED FORMULAS

Symbols

- Propositional variables/letters: $\mathfrak{Var} = \{p_0, p_1, p_2, \dots\}$
- **2** Logical connectives: \top , \perp , \neg , \Diamond , \Box , \land , \lor , \rightarrow
- Ounctuation: (and)

WFFs

Propositional letters and ⊤ and ⊥
 If φ, ψ are WFF then so are
 (¬φ), (◊φ), (□φ)
 (φ ∧ ψ), (φ ∨ ψ), (φ → ψ)
 NOTE: Drop parenthesis–Unary connectives bind closer than binary;
 e.g. write □p → p for ((□p) → p)

MODAL LOGIC LANGUAGE AND WELL FORMED FORMULAS

Symbols

- Propositional variables/letters: $\mathfrak{Var} = \{p_0, p_1, p_2, \dots\}$
- $\textcircled{O} \text{ Logical connectives: } \top, \ \bot, \ \neg, \ \Diamond, \ \Box, \ \wedge, \ \lor, \ \rightarrow$
- O Punctuation: (and)

WFFs

 ${\small {\small \bigcirc }} {\small {\rm Propositional \ letters \ and \ } \top \ and \ \bot }$

2 If φ, ψ are WFF then so are $(\neg \varphi), (\Diamond \varphi), (\Box \varphi)$

$$(\varphi \wedge \psi), \ (\varphi \lor \psi), \ (\varphi \to \psi)$$

NOTE: Drop parenthesis–Unary connectives bind closer than binary; e.g. write $\Box p \rightarrow p$ for $((\Box p) \rightarrow p)$

MODAL LOGIC BASIC AXIOMS AND INFERENCE RULES

DEFINITION

- L is a (normal) modal logic if L contains:
 - $\textcircled{ O Classical tautologies: e.g. } p \lor \neg p \text{ and } p \to (q \to p)$

$$\textcircled{0} \hspace{0.1in} \mathsf{K} = \Box(p \rightarrow q) \rightarrow (\Box p \rightarrow \Box q)$$

and L is closed under the inference rules:

- Modus Ponens (MP)
- Substitution (Sub)
- Inecessitation (N)

$$(\mathsf{MP}) \quad \frac{\varphi, \varphi \to \psi}{\psi} \qquad (\mathsf{SUB}) \quad \frac{\varphi(p)}{\varphi(\psi)} \qquad (\mathsf{N}) \quad \frac{\varphi}{\Box \varphi}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

MODAL LOGIC BASIC AXIOMS AND INFERENCE RULES

DEFINITION

- L is a (normal) modal logic if L contains:
 - $\bullet \quad {\sf Classical tautologies: e.g. } p \lor \neg p {\rm ~and~} p \to (q \to p)$

$${\color{black}@{\hspace{0.1cm}}@{\hspace{0.1cm}}} {\color{black}K} = \Box(p \to q) \to (\Box p \to \Box q)$$

and L is closed under the inference rules:

- Modus Ponens (MP)
- Substitution (Sub)
- Inecessitation (N)

$$(\mathsf{MP}) \quad \frac{\varphi, \varphi \to \psi}{\psi} \qquad (\mathsf{SUB}) \quad \frac{\varphi(p)}{\varphi(\psi)} \qquad (\mathsf{N}) \quad \frac{\varphi}{\Box \varphi}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

MODAL LOGIC BASIC AXIOMS AND INFERENCE RULES

DEFINITION

- L is a (normal) modal logic if L contains:
 - ${\small \bigcirc} \ \ {\rm Classical\ tautologies:\ e.g.\ } p \lor \neg p \ {\rm and}\ p \to (q \to p)$

$${\color{black}@{\hspace{0.1cm}}@{\hspace{0.1cm}}} {\color{black}K} = \Box(p \to q) \to (\Box p \to \Box q)$$

and $\boldsymbol{\mathsf{L}}$ is closed under the inference rules:

- Modus Ponens (MP)
- Substitution (Sub)
- Inecessitation (N)

$$(\mathsf{MP}) \quad \frac{\varphi, \varphi \to \psi}{\psi} \qquad (\mathsf{SUB}) \quad \frac{\varphi(p)}{\varphi(\psi)} \qquad (\mathsf{N}) \quad \frac{\varphi}{\Box \varphi}$$

(日)、

э

- K least modal logic: Logic of all frames
- ② K4 = K + $\Diamond \Diamond p \rightarrow \Diamond p$ logic of transitive ($\forall w \forall v \forall u \ w Rv \& vRu \Rightarrow wRu$) frames
- S4 = K4 + p → ◊p logic of reflexive (∀w wRw) and transitive frames (a.k.a. quasi-order or preorder)
- **K4D** = **K4** + \Diamond T logic of serial ($\forall w \exists v \ w Rv$) transitive fra

Equivalent Formulas

•
$$\Box(p
ightarrow q)
ightarrow (\Box p
ightarrow \Box q) \ \Box(p \land q) \leftrightarrow (\Box p \land \Box q) \ \Diamond(p \lor q) \leftrightarrow (\Diamond p \lor \Diamond q)$$

- K least modal logic: Logic of all frames
- **2** $\mathbf{K4} = \mathbf{K} + \Diamond \Diamond p \rightarrow \Diamond p$ logic of transitive ($\forall w \forall v \forall u \ w Rv \& v Ru \Rightarrow w Ru$) frames
- S4 = K4 + p → ◊p logic of reflexive (∀w wRw) and transitive frames (a.k.a. quasi-order or preorder)
- K4D = K4 + $\Diamond \top$

logic of serial $(\forall w \exists v \ w Rv)$ transitive frames

Equivalent Formulas

•
$$\Box(p
ightarrow q)
ightarrow (\Box p
ightarrow \Box q) \ \Box(p \land q) \leftrightarrow (\Box p \land \Box q) \ \Diamond(p \lor q) \leftrightarrow (\Diamond p \lor \Diamond q)$$

- K least modal logic: Logic of all frames
- ② K4 = K + $\Diamond \Diamond p \rightarrow \Diamond p$ logic of transitive ($\forall w \forall v \forall u \ w Rv \& v Ru \Rightarrow w Ru$) frames
- S4 = K4 + p → ◊p logic of reflexive (∀w wRw) and transitive frames (a.k.a. quasi-order or preorder)
- K4D = K4 + ◊⊤ logic of serial (∀w∃v wRv) transitive frames

Equivalent Formulas

•
$$\Box(p
ightarrow q)
ightarrow (\Box p
ightarrow \Box q) \ \Box(p \land q) \leftrightarrow (\Box p \land \Box q) \ \Diamond(p \lor q) \leftrightarrow (\Diamond p \lor \Diamond q)$$

- K least modal logic: Logic of all frames
- ② K4 = K + $\Diamond \Diamond p \rightarrow \Diamond p$ logic of transitive ($\forall w \forall v \forall u \ w Rv \& v Ru \Rightarrow w Ru$) frames
- S4 = K4 + p → ◊p logic of reflexive (∀w wRw) and transitive frames (a.k.a. quasi-order or preorder)
- K4D = K4 + $\Diamond \top$

logic of serial $(\forall w \exists v \ w Rv)$ transitive frames

EQUIVALENT FORMULAS

•
$$\Box(p
ightarrow q)
ightarrow (\Box p
ightarrow \Box q) \ \Box(p \land q) \leftrightarrow (\Box p \land \Box q) \ \Diamond(p \lor q) \leftrightarrow (\Diamond p \lor \Diamond q)$$

- K least modal logic: Logic of all frames
- ② K4 = K + $\Diamond \Diamond p \rightarrow \Diamond p$ logic of transitive ($\forall w \forall v \forall u \ w Rv \& v Ru \Rightarrow w Ru$) frames
- S4 = K4 + p → ◊p logic of reflexive (∀w wRw) and transitive frames (a.k.a. quasi-order or preorder)
- K4D = K4 + $\Diamond \top$

logic of serial $(\forall w \exists v \ w Rv)$ transitive frames

Equivalent Formulas

•
$$\Box(p
ightarrow q)
ightarrow (\Box p
ightarrow \Box q) \ \Box(p \land q) \leftrightarrow (\Box p \land \Box q) \ \Diamond(p \lor q) \leftrightarrow (\Diamond p \lor \Diamond q)$$

- K least modal logic: Logic of all frames
- ② K4 = K + $\Diamond \Diamond p \rightarrow \Diamond p$ logic of transitive ($\forall w \forall v \forall u \ w Rv \& v Ru \Rightarrow w Ru$) frames
- S4 = K4 + p → ◊p logic of reflexive (∀w wRw) and transitive frames (a.k.a. quasi-order or preorder)
- K4D = K4 + $\Diamond \top$

logic of serial $(\forall w \exists v \ w Rv)$ transitive frames

Equivalent Formulas

$$\begin{array}{c} \square p \leftrightarrow \neg \Diamond \neg p \\ \Diamond p \leftrightarrow \neg \square \neg p \end{array}$$

TOPOLOGICAL SPACES

DEFINITION

Call (X, τ) a topological space if $\tau \subseteq \mathcal{P}(X)$ $X, \varnothing \in \tau$

$$U, V \in \tau \Rightarrow U \cap V \in \tau$$

$$U_i \in \tau \Rightarrow \bigcup_{i \in I} U_i \in \tau \text{ for any indexing set } I$$

U open: $U \in \tau$ C closed: $X - C \in \tau$

Recall

For $A \subseteq X$ there are

INTERIOR The greatest open set contained in A, int(A)CLOSURE The least closed set containing A, \overline{A}

TOPOLOGICAL SPACES

DEFINITION

Call (X, τ) a topological space if $\tau \subseteq \mathcal{P}(X)$ **1** $X, \emptyset \in \tau$ **2** $U, V \in \tau \Rightarrow U \cap V \in \tau$ **3** $U_i \in \tau \Rightarrow \bigcup_{i \in I} U_i \in \tau$ for any indexing set I U open: $U \in \tau$ C closed: $X - C \in \tau$

RECALL

For $A \subseteq X$ there are

INTERIOR The greatest open set contained in A, int(A)CLOSURE The least closed set containing A, \overline{A}

TOPOLOGICAL SPACES

DEFINITION

Call (X, τ) a topological space if $\tau \subseteq \mathcal{P}(X)$ **1** $X, \emptyset \in \tau$ **2** $U, V \in \tau \Rightarrow U \cap V \in \tau$ **3** $U_i \in \tau \Rightarrow \bigcup_{i \in I} U_i \in \tau$ for any indexing set *I U* open: $U \in \tau$

C closed: $X - C \in \tau$

Recall

For $A \subseteq X$ there are

INTERIOR The greatest open set contained in A, int(A)CLOSURE The least closed set containing A, \overline{A}

PROPERTIES OF INTERIOR AND CLOSURE

SET OPERATIONS

$$nt(A) = \bigcup \{ U \in \tau : U \subseteq A \}$$

$$\overline{A} = \bigcap \{ C : A \subseteq C \text{ and } X - C \in \tau \}$$

CHARACTERIZATION

L

 $\begin{array}{ll} x \in int(A) & \text{iff} \quad \exists U \in \tau, \; x \in U \; \text{and} \; \forall y \in U, \; y \in A \\ x \in \overline{A} & \text{iff} \quad \forall U \in \tau, \; x \in U \Rightarrow \exists y \in U, \; y \in A \end{array}$

$$int(A) = X - \overline{X - A}$$

$$\overline{A} = X - int(X - A)$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

PROPERTIES OF INTERIOR AND CLOSURE

SET OPERATIONS

$$nt(A) = \bigcup \{ U \in \tau : U \subseteq A \}$$

$$\overline{A} = \bigcap \{ C : A \subseteq C \text{ and } X - C \in \tau \}$$

CHARACTERIZATION

 $x \in int(A) \quad \text{iff} \quad \exists U \in \tau, \ x \in U \text{ and } \forall y \in U, \ y \in A$ $x \in \overline{A} \quad \text{iff} \quad \forall U \in \tau, \ x \in U \Rightarrow \exists y \in U, \ y \in A$ $int(A) = X - \overline{X - A}$ $\overline{A} = X - int(X - A)$

PROPERTIES OF INTERIOR AND CLOSURE

SET OPERATIONS

$$nt(A) = \bigcup \{ U \in \tau : U \subseteq A \}$$

$$\overline{A} = \bigcap \{ C : A \subseteq C \text{ and } X - C \in \tau \}$$

CHARACTERIZATION

$$x \in int(A) \quad \text{iff} \quad \exists U \in \tau, \ x \in U \text{ and } \forall y \in U, \ y \in A$$
$$x \in \overline{A} \quad \text{iff} \quad \forall U \in \tau, \ x \in U \Rightarrow \exists y \in U, \ y \in A$$
$$int(A) = X - \overline{X - A}$$
$$\overline{A} = X - int(X - A)$$

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のへで

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

More Properties of Interior and Closure

Set Inclusions					
int(A)	\subseteq	A	A	\subseteq	Ā
X	\subseteq	int(X)	$\overline{\varnothing}$	\subseteq	Ø
int(A)	\subseteq	int(int(A))	$\overline{\overline{A}}$	\subseteq	\overline{A}
$int(A \cap B)$	=	$int(A) \cap int(B)$	$\overline{A \cup B}$	=	$\overline{A} \cup \overline{B}$

VALUATIONS

A function $\nu : \mathfrak{Var} \to \mathcal{P}(X)$ is a valuation

Intuitively, ν indicates where each WFF, φ is true Formally, for $x \in X$

VALUATIONS

A function $\nu : \mathfrak{Var} \to \mathcal{P}(X)$ is a valuation Intuitively, ν indicates where each WFF, φ is true Formally, for $x \in X$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

VALUATIONS

A function $\nu : \mathfrak{Var} \to \mathcal{P}(X)$ is a valuation Intuitively, ν indicates where each WFF, φ is true Formally, for $x \in X$

$$\begin{array}{lll} x \models p & \text{iff} & x \in \nu(p) \\ x \models \neg \varphi & \text{iff} & x \not\models \varphi \\ x \models \varphi \land \psi & \text{iff} & x \models \varphi \text{ and } x \models \psi \\ x \models \Box \varphi & \text{iff} & \exists U \in \tau, \ x \in U \text{ and } \forall y \in U, \ y \models \varphi \end{array}$$

Hence, $x \models \Diamond \varphi & \text{iff} & \forall U \in \tau, \ x \in U \Rightarrow \exists y \in U, \ y \models \varphi \end{array}$

・ロト・日本・日本・日本・日本・日本

Observation: φ defines a subset of X

Given ν , Let $||\varphi|| = \{x \in X : x \models \varphi\}$. Then

$ \Diamond \varphi $	$ \varphi $
$ \Box \varphi $	$\mathit{int}(\varphi)$

VALID FORMULAS

- φ is valid in X provided $\forall \nu, \forall x \in X, x \models \varphi$; write $X \models \varphi$ Equivalently $||\varphi|| = X$ for each ν
- Our provide the second sec
- $L_c(X) = \{ \varphi : X \models \varphi \}$ in case C is only one space.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Observation: φ defines a subset of X

Given ν , Let $||\varphi|| = \{x \in X : x \models \varphi\}$.Then

$$\begin{aligned} ||\Diamond \varphi|| &= ||\varphi|| \\ ||\Box \varphi|| &= int(||\varphi||) \end{aligned}$$

VALID FORMULAS

- φ is valid in X provided $\forall \nu, \forall x \in X, x \models \varphi$; write $X \models \varphi$ Equivalently $||\varphi|| = X$ for each ν
- Our provide the second sec
- $L_c(X) = \{ \varphi : X \models \varphi \}$ in case C is only one space.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Observation: φ defines a subset of X

Given ν , Let $||\varphi|| = \{x \in X : x \models \varphi\}$.Then

$$\begin{aligned} ||\Diamond \varphi|| &= ||\varphi|| \\ ||\Box \varphi|| &= int(||\varphi||) \end{aligned}$$

VALID FORMULAS

- φ is valid in X provided ∀ν, ∀x ∈ X, x ⊨ φ; write X ⊨ φ
 Equivalently ||φ|| = X for each ν
- ② For a class of spaces C, L_c(C) = {φ : ∀X ∈ C, X ⊨ φ} is a modal logic (Exercise)
- **3** $L_c(X) = \{\varphi : X \models \varphi\}$ in case C is only one space.

▲ロ → ▲圖 → ▲ 画 → ▲ 画 → ▲ 回 → ▲ □ → ■ → ▲ □ → ■ → ■ □

Observation: φ defines a subset of X

Given ν , Let $||\varphi|| = \{x \in X : x \models \varphi\}$.Then

$$\begin{aligned} ||\Diamond \varphi|| &= \overline{||\varphi||} \\ ||\Box \varphi|| &= int(||\varphi||) \end{aligned}$$

VALID FORMULAS

- φ is valid in X provided $\forall \nu, \forall x \in X, x \models \varphi$; write $X \models \varphi$ Equivalently $||\varphi|| = X$ for each ν
- ② For a class of spaces C, L_c(C) = {φ : ∀X ∈ C, X ⊨ φ} is a modal logic (Exercise)
- $L_c(X) = \{ \varphi : X \models \varphi \}$ in case C is only one space.

Observation: φ defines a subset of X

Given ν , Let $||\varphi|| = \{x \in X : x \models \varphi\}$.Then

$$\begin{aligned} ||\Diamond\varphi|| &= \overline{||\varphi||} \\ ||\Box\varphi|| &= int(||\varphi||) \end{aligned}$$

VALID FORMULAS

- φ is valid in X provided $\forall \nu, \forall x \in X, x \models \varphi$; write $X \models \varphi$ Equivalently $||\varphi|| = X$ for each ν
- Por a class of spaces C, L_c(C) = {φ : ∀X ∈ C, X ⊨ φ} is a modal logic (Exercise)
- **(a)** $L_c(X) = \{ \varphi : X \models \varphi \}$ in case C is only one space.

Observation: φ defines a subset of X

Given ν , Let $||\varphi|| = \{x \in X : x \models \varphi\}$.Then

$$\begin{aligned} ||\Diamond \varphi|| &= \overline{||\varphi||} \\ ||\Box \varphi|| &= int(||\varphi||) \end{aligned}$$

VALID FORMULAS

- φ is valid in X provided $\forall \nu, \forall x \in X, x \models \varphi$; write $X \models \varphi$ Equivalently $||\varphi|| = X$ for each ν
- Por a class of spaces C, L_c(C) = {φ : ∀X ∈ C, X ⊨ φ} is a modal logic (Exercise)
- **3** $L_c(X) = \{ \varphi : X \models \varphi \}$ in case C is only one space.

EXPRESSIVITY AND A BASIC RESULT

Formulas and Properties

$$p \to \Diamond p \qquad A \subseteq \overline{A}$$

$$\Diamond \bot \to \bot \qquad \overline{\varnothing} \subseteq \varnothing$$

$$\Diamond \Diamond p \to \Diamond p \qquad \overline{\overline{A}} \subseteq \overline{A}$$

$$\Diamond (p \lor q) \leftrightarrow (\Diamond p \lor \Diamond q) \qquad \overline{A \cup B} = \overline{A} \cup \overline{B}$$

Γ heorem

Let **Top** be class of all topological spaces, $L_c(Top) = S4$.

 $L_c(Top) ⊇ S4 (Sound)$ $L_c(Top) ⊆ S4 (Complete)$

EXPRESSIVITY AND A BASIC RESULT

Formulas and Properties

$$p \to \Diamond p \qquad A \subseteq \overline{A}$$
$$\Diamond \bot \to \bot \qquad \overline{\varnothing} \subseteq \varnothing$$
$$\Diamond \Diamond p \to \Diamond p \qquad \overline{\overline{A}} \subseteq \overline{A}$$
$$\Diamond (p \lor q) \leftrightarrow (\Diamond p \lor \Diamond q) \qquad \overline{A \cup B} = \overline{A} \cup \overline{B}$$

Theorem

Let **Top** be class of all topological spaces, $L_c(Top) = S4$.

 $L_c(Top) \supseteq S4$ $L_c(Top) \subseteq S4$

(Complete)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

EXPRESSIVITY AND A BASIC RESULT

Formulas and Properties

$$p \to \Diamond p \qquad A \subseteq \overline{A}$$
$$\Diamond \bot \to \bot \qquad \overline{\varnothing} \subseteq \varnothing$$
$$\Diamond \Diamond p \to \Diamond p \qquad \overline{\overline{A}} \subseteq \overline{A}$$
$$\Diamond (p \lor q) \leftrightarrow (\Diamond p \lor \Diamond q) \qquad \overline{A \cup B} = \overline{A} \cup \overline{B}$$

Theorem

Let **Top** be class of all topological spaces, $L_c(Top) = S4$.

$$\begin{array}{ll} \mathsf{L}_c(\mathsf{Top}) \supseteq \mathsf{S4} & (\mathsf{Sound}) \\ \mathsf{L}_c(\mathsf{Top}) \subseteq \mathsf{S4} & (\mathsf{Complete}) \end{array}$$

ヘロン 人間 とくほと くほとう

э

Specialization Order and S4-frames

DEFINITION

Let $(X, \tau) \in \mathbf{Top}$ Put $xR_{\tau}y$ iff $x \in \overline{\{y\}}$ Call R_{τ} the specialization order on X (generated by τ)

BASIC RESULTS (EXERCISES)

```
• R_{	au} is a quasi-order
```

② If au is T_1 (points are closed) then $R_ au = \{(x,x): x \in X\}$

Examples: au to $R_{ au}$

- Two point spaces: trivial, Sierpinski, discrete ((R_τ)⁻¹ is closure)
- 2 Real line \mathbb{R} $((R_{\tau})^{-1}$ is not closure)

Specialization Order and S4-frames

DEFINITION

Let $(X, \tau) \in \mathbf{Top}$ Put $xR_{\tau}y$ iff $x \in \overline{\{y\}}$ Call R_{τ} the specialization order on X (generated by τ)

BASIC RESULTS (EXERCISES)

• R_{τ} is a quasi-order

) If au is T_1 (points are closed) then $R_ au = \{(x,x): x \in X\}$

Examples: au to $R_{ au}$

- Two point spaces: trivial, Sierpinski, discrete ((R_τ)⁻¹ is closure)
- 2 Real line \mathbb{R} $((R_{\tau})^{-1}$ is not closure)

Specialization Order and S4-frames

DEFINITION

Let $(X, \tau) \in \mathbf{Top}$ Put $xR_{\tau}y$ iff $x \in \overline{\{y\}}$ Call R_{τ} the specialization order on X (generated by τ)

BASIC RESULTS (EXERCISES)

- R_{τ} is a quasi-order
- **2** If τ is T₁ (points are closed) then $R_{\tau} = \{(x, x) : x \in X\}$

Examples: τ to R_{τ}

- Two point spaces: trivial, Sierpinski, discrete ((R_τ)⁻¹ is closure)
- ② Real line \mathbb{R} $((R_{ au})^{-1}$ is not closure)
Specialization Order and $\mathbf{S4}$ -frames

DEFINITION

Let $(X, \tau) \in \text{Top}$ Put $xR_{\tau}y$ iff $x \in \overline{\{y\}}$ Call R_{τ} the specialization order on X (generated by τ)

BASIC RESULTS (EXERCISES)

- **(1)** R_{τ} is a quasi-order
- **2** If τ is T₁ (points are closed) then $R_{\tau} = \{(x, x) : x \in X\}$

Examples: τ to R_{τ}

- Two point spaces: trivial, Sierpinski, discrete ((R_τ)⁻¹ is closure)
- 2 Real line \mathbb{R} $((R_{\tau})^{-1}$ is not closure)

Specialization Order and $\textbf{S4}\text{-}\textsc{frames}_{\textsc{ii}}$

DEFINITION

Let (W, R) be a quasi-order (reflexive and transitive) Call $U \subseteq W$ an R-upset if $w \in U$ & $wRv \Rightarrow v \in U$

Call τ_R the Alexandrov topology on W (generated by R)

Examples: R to au_R

() Two point frames: cluster, chain, anti-chain (closure is R^{-1})

- 2 Two Fork (closure is R^{-1})
- ${old 0}~({\mathbb R},\leq)$ (closure is $\leq^{-1})$

Specialization Order and $\textbf{S4}\text{-}\textsc{frames}_{\textsc{ii}}$

DEFINITION

Let (W, R) be a quasi-order (reflexive and transitive) Call $U \subseteq W$ an R-upset if $w \in U$ & $wRv \Rightarrow v \in U$ Let $\tau_R = \{U \subseteq W : U \text{ is } R\text{-upset}\}$ Call τ_R the Alexandrov topology on W (generated by R)

Examples: R to τ_R

 $lacksymbol{0}$ Two point frames: cluster, chain, anti-chain (closure is $R^{-1})$

- 2 Two Fork (closure is R^{-1})
- \bigcirc (\mathbb{R},\leq) (closure is \leq^{-1})

Specialization Order and $\textbf{S4}\text{-}\textsc{frames}_{\textsc{ii}}$

DEFINITION

Let (W, R) be a quasi-order (reflexive and transitive) Call $U \subseteq W$ an R-upset if $w \in U$ & $wRv \Rightarrow v \in U$ Let $\tau_R = \{U \subseteq W : U \text{ is } R\text{-upset}\}$ Call τ_R the Alexandrov topology on W (generated by R)

EXAMPLES: R to τ_R

• Two point frames: cluster, chain, anti-chain (closure is R^{-1})

- **2** Two Fork (closure is R^{-1})
- (\mathbb{R}, \leq) (closure is \leq^{-1})

Specialization Order and $\textbf{S4}\text{-}\textsc{frames}_\textsc{iii}$

BASIC RESULTS (EXERCISES)

- τ_R is a topology satisfying $U_i \in \tau_R \Rightarrow \bigcap_{i \in I} U_i \in \tau_R$
- $In (W, \tau_R), \overline{A} = R^{-1}(A) = \{ w \in W : \exists v \in A \ wRv \}$
- If $R = \{(w, w) : w \in W\}$ then $\tau_R = \mathcal{P}(W)$
- *R* is partial order iff τ_R is T₀
 - Partial order is a quasi-order that is antisymmetric (∀w∀v wRv & vRw ⇒ w = v)
 - In a T₀ space for each pair of distinct points there is an open set that contains exactly one of the pair (∀x∀y, ∃U ∈ τ, x ∈ U & y ∉ U or x ∉ U & y ∈ U)

Specialization Order and ${\bf S4}\xspace$ -frames $\xspace{\rm III}$

BASIC RESULTS (EXERCISES)

- τ_R is a topology satisfying $U_i \in \tau_R \Rightarrow \bigcap_{i \in I} U_i \in \tau_R$
- $In (W, \tau_R), \overline{A} = R^{-1}(A) = \{ w \in W : \exists v \in A \ wRv \}$

If $R = \{(w, w) : w \in W\}$ then $au_R = \mathcal{P}(W)$

• *R* is partial order iff τ_R is T₀

- Partial order is a quasi-order that is antisymmetric (∀w∀v wRv & vRw ⇒ w = v)
- In a T₀ space for each pair of distinct points there is an open set that contains exactly one of the pair (∀x∀y, ∃U ∈ τ, x ∈ U & y ∉ U or x ∉ U & y ∈ U)

Specialization Order and ${\bf S4}\mbox{-}{\bf Frames}\mbox{}_{\rm III}$

BASIC RESULTS (EXERCISES)

- τ_R is a topology satisfying $U_i \in \tau_R \Rightarrow \bigcap_{i \in I} U_i \in \tau_R$
- $In (W, \tau_R), \overline{A} = R^{-1}(A) = \{ w \in W : \exists v \in A \ wRv \}$

• If $R = \{(w, w) : w \in W\}$ then $\tau_R = \mathcal{P}(W)$

Is partial order iff au_R is T₀

- Partial order is a quasi-order that is antisymmetric (∀w∀v wRv & vRw ⇒ w = v)
- In a T₀ space for each pair of distinct points there is an open set that contains exactly one of the pair (∀x∀y, ∃U ∈ τ, x ∈ U & y ∉ U or x ∉ U & y ∈ U)

Specialization Order and ${\bf S4}\mbox{-}{\bf Frames}\mbox{}_{\rm III}$

BASIC RESULTS (EXERCISES)

- τ_R is a topology satisfying $U_i \in \tau_R \Rightarrow \bigcap_{i \in I} U_i \in \tau_R$
- $In (W, \tau_R), \overline{A} = R^{-1}(A) = \{ w \in W : \exists v \in A \ wRv \}$
- If $R = \{(w, w) : w \in W\}$ then $\tau_R = \mathcal{P}(W)$
- *R* is partial order iff τ_R is T_0
 - Partial order is a quasi-order that is antisymmetric (∀w∀v wRv & vRw ⇒ w = v)
 - In a T₀ space for each pair of distinct points there is an open set that contains exactly one of the pair (∀x∀y, ∃U ∈ τ, x ∈ U & y ∉ U or x ∉ U & y ∈ U)

Specialization Order and ${\bf S4}\mbox{-}{\bf Frames}\mbox{}_{\rm III}$

BASIC RESULTS (EXERCISES)

- τ_R is a topology satisfying $U_i \in \tau_R \Rightarrow \bigcap_{i \in I} U_i \in \tau_R$
- $In (W, \tau_R), \overline{A} = R^{-1}(A) = \{ w \in W : \exists v \in A \ wRv \}$
- If $R = \{(w, w) : w \in W\}$ then $\tau_R = \mathcal{P}(W)$
- *R* is partial order iff τ_R is T_0
 - Partial order is a quasi-order that is antisymmetric
 (∀w∀v wRv & vRw ⇒ w = v)
 - In a T₀ space for each pair of distinct points there is an open set that contains exactly one of the pair
 (∀x∀y, ∃U ∈ τ, x ∈ U & y ∉ U or x ∉ U & y ∈ U)

DEFINITION

Call $(X, \tau) \in$ **Top** an Alexandrov space provided

$$U_i \in \tau \Rightarrow \bigcap_{i \in I} U_i \in \tau$$
 for any indexing set I

E.g. For (W, R) a quasi-order, (W, τ_R) is an Alexandrov space Let **Alex** be the class of all Alexandrov spaces

Theorems (exercise)

$$\textbf{0} \ (X,\tau) \in \textbf{Alex} \text{ iff } \forall x \in X \text{ there is least } U \in \tau \text{ with } x \in U$$

②
$$R=R_{ au_R}$$
 and $au\subseteq au_{R_ au}$

$${f 3} {f 0}$$
 If $(X, au)\in {f Alex}$ then $au= au_{R_ au}$

DEFINITION

Call $(X, \tau) \in$ **Top** an Alexandrov space provided

$$U_i \in \tau \Rightarrow \bigcap_{i \in I} U_i \in \tau$$
 for any indexing set I

E.g. For (W, R) a quasi-order, (W, τ_R) is an Alexandrov space Let **Alex** be the class of all Alexandrov spaces

Γ HEOREMS (EXERCISE)

$${old 0}$$
 $(X, au)\in {old Alex}$ iff $orall x\in X$ there is least $U\in au$ with $x\in U$

②
$${\it R}={\it R}_{ au_R}$$
 and $au\subseteq au_{{\it R}_ au}$

$${f ar{o}}$$
 If $(X, au)\in {f Alex}$ then $au= au_{R_{ au}}$

DEFINITION

Call $(X, \tau) \in$ **Top** an Alexandrov space provided

$$U_i \in \tau \Rightarrow \bigcap_{i \in I} U_i \in \tau$$
 for any indexing set I

E.g. For (W, R) a quasi-order, (W, τ_R) is an Alexandrov space Let **Alex** be the class of all Alexandrov spaces

THEOREMS (EXERCISE)

(
$$X, au$$
) \in **Alex** iff $\forall x \in X$ there is least $U \in au$ with $x \in U$

- ② ${\it R}={\it R}_{ au_R}$ and $au\subseteq au_{{\it R}_ au}$
- (a) If $(X, \tau) \in$ **Alex** then $\tau = \tau_{R_{\tau}}$

DEFINITION

Call $(X, \tau) \in$ **Top** an Alexandrov space provided

$$U_i \in \tau \Rightarrow \bigcap_{i \in I} U_i \in \tau$$
 for any indexing set I

E.g. For (W, R) a quasi-order, (W, τ_R) is an Alexandrov space Let **Alex** be the class of all Alexandrov spaces

THEOREMS (EXERCISE)

(
$$X, au$$
) \in **Alex** iff $\forall x \in X$ there is least $U \in au$ with $x \in U$

2)
$$R=R_{ au_R}$$
 and $au\subseteq au_{R_ au}$

) If $(X, au)\in \operatorname{\mathsf{Alex}}$ then $au= au_{R_ au}$

DEFINITION

Call $(X, \tau) \in$ **Top** an Alexandrov space provided

$$U_i \in \tau \Rightarrow \bigcap_{i \in I} U_i \in \tau$$
 for any indexing set I

E.g. For (W, R) a quasi-order, (W, τ_R) is an Alexandrov space Let **Alex** be the class of all Alexandrov spaces

THEOREMS (EXERCISE)

①
$$(X, au)\in$$
 Alex iff $orall x\in X$ there is least $U\in au$ with $x\in U$

2)
$$R=R_{ au_R}$$
 and $au\subseteq au_{R_ au}$

3) If
$$(X, au)\in \operatorname{\mathsf{Alex}}$$
 then $au= au_{{ extsf{R}}_ au}$

C-SEMANTICS REALIZING KRIPKE SEMANTICS

Theorem

Let (W, R) be a quasi-order

 $(W, R) \models \varphi \text{ iff } (W, \tau_R) \models \varphi$

• Frame semantics for quasi-orders is special case of c-semantics So frame completeness moves to topological completeness

•
$$L_c(Alex) = S4$$

•
$$L_c(Alex_{fin}) = S4$$

C-SEMANTICS REALIZING KRIPKE SEMANTICS

Theorem

Let (W, R) be a quasi-order

$$(W, R) \models \varphi \text{ iff } (W, \tau_R) \models \varphi$$

• Frame semantics for quasi-orders is special case of c-semantics So frame completeness moves to topological completeness

•
$$L_c(Alex) = S4$$

•
$$L_c(Alex_{fin}) = S4$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ = 目 - のへで

C-SEMANTICS REALIZING KRIPKE SEMANTICS

THEOREM

Let (W, R) be a quasi-order

$$(W, R) \models \varphi \text{ iff } (W, \tau_R) \models \varphi$$

• Frame semantics for quasi-orders is special case of c-semantics So frame completeness moves to topological completeness

•
$$L_c(Alex) = S4$$

•
$$L_c(Alex_{fin}) = S4$$

・ロト ・西ト ・ヨト ・ヨー うらぐ

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

C-SEMANTICS REALIZING KRIPKE SEMANTICS

Theorem

Let (W, R) be a quasi-order

$$(W, R) \models \varphi \text{ iff } (W, \tau_R) \models \varphi$$

• Frame semantics for quasi-orders is special case of c-semantics So frame completeness moves to topological completeness

•
$$L_c(Alex) = S4$$

• $L_c(Alex_{fin}) = S4$

C-SEMANTICS REALIZING KRIPKE SEMANTICS

THEOREM

Let (W, R) be a quasi-order

$$(W, R) \models \varphi \text{ iff } (W, \tau_R) \models \varphi$$

• Frame semantics for quasi-orders is special case of c-semantics So frame completeness moves to topological completeness

•
$$L_c(Alex) = S4$$

•
$$L_c(Alex_{fin}) = S4$$

◆□▶ ▲□▶ ▲目▶ ▲□▶ ▲□▶

Theorem

•
$$L_c(Top) = S4$$

2 Let X be (separable) metrizable dense-in-itself space,
 L_c(X) = S4
 dense-in-itself: X has no isolated points, that is {x} ∉ c

3 $\mathsf{L}_c(\mathbb{R}^2) = \mathsf{L}_c(\mathbb{R}) = \mathsf{L}_c(\mathbb{Q}) = \mathsf{L}_c(\mathsf{C}) = \mathsf{S}^4$

Remark

Idea is to move frame completeness to topological completeness via functions that make R^{-1} coincide with closure; i.e.

$$f^{-1}(R^{-1}(A)) = \overline{f^{-1}(A)}$$

Such functions are called interior functions; some examples for $\mathbb R$

(ロ) (部) (注) (注) (こ) (の)

Theorem

•
$$L_c(Top) = S4$$

Let X be (separable) metrizable dense-in-itself space,
 L_c(X) = S4

dense-in-itself: X has no isolated points, that is $\{x\} \notin \tau$

a $\mathsf{L}_c(\mathbb{R}^2) = \mathsf{L}_c(\mathbb{R}) = \mathsf{L}_c(\mathbb{Q}) = \mathsf{L}_c(\mathsf{C}) = \mathsf{S4}$

Remark

Idea is to move frame completeness to topological completeness via functions that make R^{-1} coincide with closure; i.e.

$$f^{-1}(R^{-1}(A)) = \overline{f^{-1}(A)}$$

Such functions are called interior functions; some examples for $\mathbb R$

▲□▶ ▲御▶ ▲臣▶ ★臣▶ = 臣 = 約९(

Theorem

•
$$L_c(Top) = S4$$

2 Let X be (separable) metrizable dense-in-itself space, L_c(X) = S4 dense-in-itself: X has no isolated points, that is {x} ∉ τ
0 L_c(ℝ²) = L_c(ℝ) = L_c(ℚ) = L_c(C) = S4

Remark

Idea is to move frame completeness to topological completeness via functions that make R^{-1} coincide with closure; i.e.

$$f^{-1}(R^{-1}(A)) = \overline{f^{-1}(A)}$$

Such functions are called interior functions; some examples for $\mathbb R$

・ロト ・母 ト ・ ヨ ト ・ ヨ ・ うへで

Theorem

•
$$L_c(Top) = S4$$

2 Let X be (separable) metrizable dense-in-itself space,
 L_c(X) = S4
 dense-in-itself: X has no isolated points, that is {x} ∉ τ

6 $L_c(\mathbb{R}^2) = L_c(\mathbb{R}) = L_c(\mathbb{Q}) = L_c(\mathbb{C}) = S4$

Remark

Idea is to move frame completeness to topological completeness via functions that make R^{-1} coincide with closure; i.e.

$$f^{-1}(R^{-1}(A)) = \overline{f^{-1}(A)}$$

Such functions are called interior functions; some examples for $\mathbb R$

・ロト ・母 ト ・ ヨ ト ・ ヨ ・ うへで

Theorem

•
$$L_c(Top) = S4$$

Q Let X be (separable) metrizable dense-in-itself space,
 L_c(X) = S4
 dense-in-itself: X has no isolated points, that is {x} ∉ τ

3
$$L_c(\mathbb{R}^2) = L_c(\mathbb{R}) = L_c(\mathbb{Q}) = L_c(\mathbb{C}) = S4$$

Remark

Idea is to move frame completeness to topological completeness via functions that make R^{-1} coincide with closure; i.e.

$$f^{-1}(R^{-1}(A)) = \overline{f^{-1}(A)}$$

Such functions are called interior functions; some examples for $\mathbb R$

<□> <御> <注> <注> <注</td>

Theorem

•
$$L_c(Top) = S4$$

≥ Let X be (separable) metrizable dense-in-itself space,
 L_c(X) = S4
 dense-in-itself: X has no isolated points, that is {x} ∉ τ

3
$$L_c(\mathbb{R}^2) = L_c(\mathbb{R}) = L_c(\mathbb{Q}) = L_c(\mathbb{C}) = S4$$

Remark

Idea is to move frame completeness to topological completeness via functions that make R^{-1} coincide with closure; i.e.

$$f^{-1}(R^{-1}(A)) = \overline{f^{-1}(A)}$$

Such functions are called interior functions; some examples for $\mathbb R$

▲ロト ▲聞 ト ▲ ヨト ▲ ヨト ― ヨー 釣ん(

Theorem

•
$$L_c(Top) = S4$$

2 Let X be (separable) metrizable dense-in-itself space,
 L_c(X) = S4
 dense-in-itself: X has no isolated points, that is {x} ∉ τ

3
$$\mathsf{L}_c(\mathbb{R}^2) = \mathsf{L}_c(\mathbb{R}) = \mathsf{L}_c(\mathbb{Q}) = \mathsf{L}_c(\mathsf{C}) = \mathsf{S4}$$

Remark

Idea is to move frame completeness to topological completeness via functions that make R^{-1} coincide with closure; i.e.

$$f^{-1}(R^{-1}(A)) = \overline{f^{-1}(A)}$$

Such functions are called interior functions; some examples for $\mathbb R$

▲ロト ▲聞 ト ▲ ヨト ▲ ヨト ― ヨー 釣ん(

Theorem

•
$$L_c(Top) = S4$$

2 Let X be (separable) metrizable dense-in-itself space,
 L_c(X) = S4
 dense-in-itself: X has no isolated points, that is {x} ∉ τ

3
$$L_c(\mathbb{R}^2) = L_c(\mathbb{R}) = L_c(\mathbb{Q}) = L_c(\mathbb{C}) = S4$$

Remark

Idea is to move frame completeness to topological completeness via functions that make R^{-1} coincide with closure; i.e.

$$f^{-1}(R^{-1}(A)) = \overline{f^{-1}(A)}$$

Such functions are called interior functions; some examples for $\mathbb R$

▲ロト ▲聞 ト ▲ ヨト ▲ ヨト ― ヨー 釣ん(

Theorem

•
$$L_c(Top) = S4$$

2 Let X be (separable) metrizable dense-in-itself space,
 L_c(X) = S4
 dense-in-itself: X has no isolated points, that is {x} ∉ τ

3
$$\mathbf{L}_c(\mathbb{R}^2) = \mathbf{L}_c(\mathbb{R}) = \mathbf{L}_c(\mathbb{Q}) = \mathbf{L}_c(\mathbf{C}) = \mathbf{S4}$$

Remark

Idea is to move frame completeness to topological completeness via functions that make R^{-1} coincide with closure; i.e.

$$f^{-1}(R^{-1}(A)) = \overline{f^{-1}(A)}$$

Such functions are called interior functions; some examples for $\mathbb R$

200

イロン 不得と イヨン イヨン

Theorem

•
$$L_c(Top) = S4$$

2 Let X be (separable) metrizable dense-in-itself space,
 L_c(X) = S4
 dense-in-itself: X has no isolated points, that is {x} ∉ τ

$$L_c(\mathbb{R}^2) = L_c(\mathbb{R}) = L_c(\mathbb{Q}) = L_c(\mathbb{C}) = S4$$

Remark

Idea is to move frame completeness to topological completeness via functions that make R^{-1} coincide with closure; i.e.

$$f^{-1}(R^{-1}(A)) = \overline{f^{-1}(A)}$$

イロン 不得と イヨン イヨン

Such functions are called interior functions; some examples for $\mathbb R$

TOPOLOGICAL DERIVATIVE LIMIT POINT OPERATOR

Recall

Definition: For $A \subseteq X$,

 $x \in d(A)$ iff $\forall U \in \tau, x \in U \Rightarrow \exists y \in U - \{x\}, y \in A$

Properties:

 $\overline{A} = A \cup d(A)$ $d(\emptyset) \subseteq \emptyset$ $d(A \cup B) = d(A) \cup d(B)$ $d(d(A)) \subseteq A \cup d(A)$

・ロト・雪ト・雪ト・雪・ 今日・

TOPOLOGICAL DERIVATIVE LIMIT POINT OPERATOR

Recall

Definition: For $A \subseteq X$,

 $x \in d(A)$ iff $\forall U \in \tau, x \in U \Rightarrow \exists y \in U - \{x\}, y \in A$

Properties:

$$\overline{A} = A \cup d(A)$$
$$d(\emptyset) \subseteq \emptyset$$
$$d(A \cup B) = d(A) \cup d(B)$$
$$d(d(A)) \subseteq A \cup d(A)$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

TOPOLOGICAL DERIVATIVE DUAL OPERATOR

DEFINITION

Coderivative t is dual to derivative; so ...

t(A) = X - d(X - A) $x \in t(A)$ iff $\exists U \in \tau, \ x \in U \& \ \forall y \in U - \{x\}, \ y \in A$

Also

$$d(A) = X - t(X - A)$$

$$int(A) = A \cap t(A)$$

$$t(X) \supseteq X$$

$$t(A \cap B) = t(A) \cap t(B)$$

$$A \cap t(A) \subseteq t(t(A))$$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ - 厘 - のへで

TOPOLOGICAL DERIVATIVE DUAL OPERATOR

DEFINITION

Coderivative t is dual to derivative; so ...

$$t(A) = X - d(X - A)$$

 $x \in t(A)$ iff $\exists U \in \tau, x \in U \& \forall y \in U - \{x\}, y \in A$

Also

$$d(A) = X - t(X - A)$$

$$int(A) = A \cap t(A)$$

$$t(X) \supseteq X$$

$$t(A \cap B) = t(A) \cap t(B)$$

$$A \cap t(A) \subseteq t(t(A))$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

TOPOLOGICAL DERIVATIVE DUAL OPERATOR

DEFINITION

Coderivative t is dual to derivative; so ...

$$t(A) = X - d(X - A)$$

 $x \in t(A)$ iff $\exists U \in \tau, x \in U \& \forall y \in U - \{x\}, y \in A$

Also

$$d(A) = X - t(X - A)$$

$$int(A) = A \cap t(A)$$

$$t(X) \supseteq X$$

$$t(A \cap B) = t(A) \cap t(B)$$

$$A \cap t(A) \subseteq t(t(A))$$

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 臣 … のへで

DIAMOND AS DERIVATIVE

VALUATIONS

A valuation is $\nu : \mathfrak{Var} \to \mathcal{P}(X)$

$$\begin{array}{lll} x \models p & \text{iff} & x \in \nu(p) \\ x \models \neg \varphi & \text{iff} & x \not\models \varphi \\ x \models \varphi \land \psi & \text{iff} & x \models \varphi \text{ and } x \models \psi \\ x \models \Box \varphi & \text{iff} & \exists U \in \tau, \ x \in U \text{ and } \forall y \in U - \{x\}, \ y \models \varphi \\ \text{Hence,} \\ x \models \Diamond \varphi & \text{iff} & \forall U \in \tau, \ x \in U \Rightarrow \exists y \in U - \{x\}, \ y \models \varphi \end{array}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

DIAMOND AS DERIVATIVE

As Before: φ defines a subset of X

Given ν , Put $||\varphi|| = \{x \in X : x \models \varphi\}$. Then $||\Diamond \varphi|| = d(||\varphi||)$

$$||\Box\varphi|| = t(||\varphi||)$$

VALIDITY

- φ is valid in X provided $\forall \nu, ||\varphi|| = X$
- L_d(C) = {φ : ∀X ∈ C, X ⊨ φ} is a modal logic for any class of spaces C (Exercise)
- If $L = L_d(C)$ for some class C of spaces, call L a d-logic
- If $L = L_c(C)$ for some class C of spaces, call L a c-logic
DIAMOND AS DERIVATIVE

As Before: φ defines a subset of X

Given ν , Put $||\varphi|| = \{x \in X : x \models \varphi\}$. Then $||\Diamond \varphi|| = d(||\varphi||)$

VALIDITY

- φ is valid in X provided $\forall \nu$, $||\varphi|| = X$
- Solution 2 $\{\varphi : \forall X \in \mathcal{C}, X \models \varphi\}$ is a modal logic for any class of spaces \mathcal{C} (Exercise)

 $||\Box \varphi|| = t(||\varphi||)$

- ③ If $\mathsf{L} = \mathsf{L}_d(\mathcal{C})$ for some class \mathcal{C} of spaces, call L a d-logic
- ① If $\mathsf{L} = \mathsf{L}_c(\mathcal{C})$ for some class \mathcal{C} of spaces, call L a c-logic

DIAMOND AS DERIVATIVE

As Before: φ defines a subset of X

Given ν , Put $||\varphi|| = \{x \in X : x \models \varphi\}$. Then $||\Diamond \varphi|| = d(||\varphi||)$ $||\Box \varphi|| = t(||\varphi||)$

VALIDITY

- φ is valid in X provided $\forall \nu$, $||\varphi|| = X$
- L_d(C) = {\varphi : \forall X ∈ C, X ⊨ \varphi} is a modal logic for any class of spaces C (Exercise)
- **(3)** If $\mathbf{L} = \mathbf{L}_d(\mathcal{C})$ for some class \mathcal{C} of spaces, call \mathbf{L} a d-logic
- If $L = L_c(C)$ for some class C of spaces, call L a c-logic

Some Topological Properties

RECALL (EXERCISES)

(X, τ) is dense-in-itself (dii) if X has no isolated points (∀x ∈ X, {x} ∉ τ) Equivalently...

$$d(X) = X$$

② (X, τ) is T_d provided points are locally closed (∀x ∈ X ∃U ∈ τ, {x} = U ∩ {x}) Equivalently... ∀A ⊆ X,

$$d(d(A)) \subseteq d(A)$$

・ロト・日本・日本・日本・日本・日本

Some Topological Properties

RECALL (EXERCISES)

 (X, τ) is dense-in-itself (dii) if X has no isolated points (∀x ∈ X, {x} ∉ τ) Equivalently...

$$d(X) = X$$

 (X, \tau) is T_d provided points are locally closed (∀x ∈ X ∃U ∈ \tau, {x} = U ∩ {x}) Equivalently... ∀A ⊆ X,

 $d(d(A)) \subseteq d(A)$

Some Topological Properties

RECALL (EXERCISES)

 (X, τ) is dense-in-itself (dii) if X has no isolated points (∀x ∈ X, {x} ∉ τ) Equivalently...

$$d(X) = X$$

② (X, τ) is T_d provided points are locally closed (∀x ∈ X ∃U ∈ τ , {x} = U ∩ {x}) Equivalently... ∀A ⊆ X,

$$d(d(A)) \subseteq d(A)$$

EXPRESSIVITY IN D-SEMANTICS

FORMULAS AND PROPERTIES

Always Valid:		
$\Diamond\bot\to\bot$	$d(arnothing)\subseteq arnothing$	
$\Diamond\Diamond p o p \lor \Diamond p$	$d(d(A))\subseteq A\cup d(A)$	
$\Diamond(p\lor q)\leftrightarrow(\Diamond p\lor\Diamond q)$	$d(A\cup B)=d(A)\cup d(B)$	
Sometimes Valid:		
$\Diamond\Diamond ho ho ightarrow \Diamond ho$	$d(d(A)) \subseteq d(A)$	(T_d)
$\Diamond\top$	d(X) = X	(dii)
Never Valid:		
$ ho ightarrow \Diamond ho$	$A\subseteq d(A)$	

EXPRESSIVITY IN D-SEMANTICS

FORMULAS AND PROPERTIES

Always Valid:		
$\Diamond\bot\to\bot$	$d(\varnothing)\subseteq \varnothing$	
$\Diamond\Diamond p o p \lor \Diamond p$	$d(d(A))\subseteq A\cup d(A)$	
$\Diamond(p\lor q)\leftrightarrow (\Diamond p\lor \Diamond q)$	$d(A \cup B) = d(A) \cup d(B)$	
Sometimes Valid:		
$\Diamond\Diamond p o \Diamond p$	$d(d(A)) \subseteq d(A)$	(T_d)
$\Diamond\top$	d(X) = X	(dii)
Never Valid:		
$p ightarrow \Diamond p$	$A\subseteq d(A)$	

So d-semantics is strictly more expressive than c-semantics!

Theorem

2
$$L_d({X \in \text{Top} : X \text{ is } T_d}) = K4$$

• $L_d({X \in \text{Top} : X \text{ is dii and } T_d}) = K4D$

As Before:

Utilize results in frame semantics But the new situation is more delicate Recall closure 'was' R^{-1} ... Want similar for d

EXAMPLES:

- 2 point spaces: trivial and Sierpinski
- ② Distinguish between line and plane

Theorem

2
$$L_d({X \in \text{Top} : X \text{ is } T_d}) = K4$$

• $L_d({X \in \text{Top} : X \text{ is dii and } T_d}) = K4D$

As Before:

Utilize results in frame semantics But the new situation is more delicate Recall closure 'was' R^{-1} ... Want similar for d

EXAMPLES:

- 2 point spaces: trivial and Sierpinski
- ② Distinguish between line and plane

Theorem

2
$$L_d({X \in \text{Top} : X \text{ is } T_d}) = K4$$

• $L_d({X \in \text{Top} : X \text{ is dii and } T_d}) = K4D$

As Before:

Utilize results in frame semantics But the new situation is more delicate Recall closure 'was' *R*⁻¹... Want similar for *d*

Examples:

- 2 point spaces: trivial and Sierpinski
- ② Distinguish between line and plane

Theorem

2
$$L_d({X \in \text{Top} : X \text{ is } T_d}) = K4$$

3
$$L_d({X \in \mathbf{Top} : X \text{ is dii and } T_d}) = K4D$$

As Before:

Utilize results in frame semantics

But the new situation is more delicate

Recall closure 'was' R^{-1} ... Want similar for d

Examples:

- 1 2 point spaces: trivial and Sierpinski
- ② Distinguish between line and plane

Theorem

2
$$L_d({X \in \text{Top} : X \text{ is } T_d}) = K4$$

3
$$L_d({X \in \mathbf{Top} : X \text{ is dii and } T_d}) = K4D$$

As Before:

Utilize results in frame semantics But the new situation is more delicate Recall closure 'was' R^{-1} ... Want similar for d

Examples:

2 point spaces: trivial and Sierpinski

② Distinguish between line and plane

Theorem

2
$$L_d({X \in \text{Top} : X \text{ is } T_d}) = K4$$

$$\textbf{0} \ \ \mathsf{L}_d(\{X\in\mathsf{Top}:X \text{ is dii and }\mathsf{T}_d\})=\mathsf{K4D}$$

As Before:

Utilize results in frame semantics But the new situation is more delicate Recall closure 'was' R^{-1} ... Want similar for d

Examples:

2 point spaces: trivial and Sierpinski

② Distinguish between line and plane

Theorem

2
$$L_d({X \in \text{Top} : X \text{ is } T_d}) = K4$$

3
$$L_d({X \in \mathbf{Top} : X \text{ is dii and } T_d}) = K4D$$

As Before:

Utilize results in frame semantics But the new situation is more delicate Recall closure 'was' R^{-1} ... Want similar for d

EXAMPLES:

2 point spaces: trivial and Sierpinski

② Distinguish between line and plane

DEFINITION

Call (W, R) weakly transitive if $\forall w \forall v \forall u \ w Rv \ \& \ v Ru \ \& \ w \neq u \Rightarrow w Ru$

LEMMA (Exercise)

(W,R) is weakly transitive iff $(W,R) \models \Diamond \Diamond p \rightarrow (p \lor \Diamond p)$

DEFINITION

For $(X, \tau) \in$ **Top**, put $xS_{\tau}y$ iff $x \in d(\{y\})$

- (X, S_τ) is weakly transitive and irreflexive (no point is related to itself)
- $\ \, {\it O} \ \, S_\tau = R_\tau \{(x,x): x\in X\} \ \, ({\it recall} \ \, R_\tau \ \, {\it is specialization order})$

DEFINITION

Call (W, R) weakly transitive if $\forall w \forall v \forall u \ w Rv \ \& \ v Ru \ \& \ w \neq u \Rightarrow w Ru$

LEMMA (EXERCISE)

(W,R) is weakly transitive iff $(W,R) \models \Diamond \Diamond p \rightarrow (p \lor \Diamond p)$

DEFINITION

For $(X, \tau) \in$ **Top**, put $xS_{\tau}y$ iff $x \in d(\{y\})$

- (X, S_τ) is weakly transitive and irreflexive (no point is related to itself)
- $\ \, {\it O} \ \, S_\tau = R_\tau \{(x,x): x\in X\} \ \, ({\it recall} \ \, R_\tau \ \, {\it is specialization order})$

DEFINITION

Call (W, R) weakly transitive if $\forall w \forall v \forall u \ w Rv \ \& \ v Ru \ \& \ w \neq u \Rightarrow w Ru$

LEMMA (EXERCISE)

(W,R) is weakly transitive iff $(W,R) \models \Diamond \Diamond p \rightarrow (p \lor \Diamond p)$

DEFINITION

For $(X, \tau) \in$ **Top**, put $xS_{\tau}y$ iff $x \in d(\{y\})$

- (X, S_{τ}) is weakly transitive and irreflexive (no point is related to itself)
- $\ \, {\it O} \ \, S_\tau = R_\tau \{(x,x): x\in X\} \ \, ({\it recall} \ \, R_\tau \ \, {\it is specialization order})$

DEFINITION

Call (W, R) weakly transitive if $\forall w \forall v \forall u \ w Rv \ \& \ v Ru \ \& \ w \neq u \Rightarrow w Ru$

LEMMA (EXERCISE)

(W,R) is weakly transitive iff $(W,R) \models \Diamond \Diamond p \rightarrow (p \lor \Diamond p)$

DEFINITION

For $(X, \tau) \in$ **Top**, put $xS_{\tau}y$ iff $x \in d(\{y\})$

BASIC RESULTS (EXERCISES)

(X, S_τ) is weakly transitive and irreflexive (no point is related to itself)

② $S_ au = R_ au - \{(x,x): x \in X\}$ (recall $R_ au$ is specialization order)

DEFINITION

Call (W, R) weakly transitive if $\forall w \forall v \forall u \ w Rv \ \& \ v Ru \ \& \ w \neq u \Rightarrow w Ru$

LEMMA (EXERCISE)

(W,R) is weakly transitive iff $(W,R) \models \Diamond \Diamond p \rightarrow (p \lor \Diamond p)$

DEFINITION

For
$$(X, \tau) \in$$
 Top, put $xS_{\tau}y$ iff $x \in d(\{y\})$

- (X, S_τ) is weakly transitive and irreflexive (no point is related to itself)
- **2** $S_{ au} = R_{ au} \{(x,x) : x \in X\}$ (recall $R_{ au}$ is specialization order)

Analogue to Specialization Order

MORE BASIC RESULTS (EXERCISES) $S_{\tau_{R}} \subseteq R$ • $\tau \subseteq \tau_{S_{-}}$ • $\tau_{S_{\pi}}$ is Alexandrov topology • $S_{\tau_B} = R$ • $d(A) = R^{-1}(A)$ in (W, τ_R)

Analogue to Specialization Order

MORE BASIC RESULTS (EXERCISES) $S_{\tau_R} \subseteq R$ $T_{S_{\tau}} = \tau_{R_{\tau}}$ • $\tau \subseteq \tau_{S_{\tau}}$ • $\tau_{S_{\pi}}$ is Alexandrov topology • $S_{\tau_B} = R$ • $d(A) = R^{-1}(A)$ in (W, τ_R)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Analogue to Specialization Order

MORE BASIC RESULTS (EXERCISES) $S_{\tau_{R}} \subseteq R$ $T_{S_{\tau}} = \tau_{R_{\tau}}$ Hence • $\tau \subseteq \tau_{S_{\tau}}$ • $\tau_{S_{\tau}}$ is Alexandrov topology • $S_{\tau_B} = R$ • $d(A) = R^{-1}(A)$ in (W, τ_R)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Analogue to Specialization Order $_{\rm II}$

More Basic Results (Exercises)

- $I S_{\tau_R} \subseteq R$
- $\tau_{S_{\tau}} = \tau_{R_{\tau}}$ Hence...
 - $\tau \subseteq \tau_{S_{\tau}}$
 - $\tau_{\mathcal{S}_{\tau}}$ is Alexandrov topology

If R is irreflexive and weakly transitive then

•
$$S_{\tau_R} = R$$

• $d(\Lambda) = R^{-1}(\Lambda)$ in (M

•
$$d(A) = R^{-1}(A)$$
 in (W, τ_R)

• If X is Alexandrov then $au = au_{S_{ au}}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Analogue to Specialization Order $_{\rm II}$

More Basic Results (Exercises)

- $I S_{\tau_R} \subseteq R$
- $\tau_{S_{\tau}} = \tau_{R_{\tau}}$ Hence...
 - $\tau \subseteq \tau_{S_{\tau}}$
 - $\tau_{\mathcal{S}_{\tau}}$ is Alexandrov topology

If R is irreflexive and weakly transitive then

$$S_{\tau_R} = R$$

•
$$d(A) = R^{-1}(A)$$
 in (W, τ_R)

• If X is Alexandrov then $\tau = \tau_{S_{\tau}}$

Theorem

Let (W, R) be an irreflexive weakly transitive frame In d-semantics

 $(W, R) \models \varphi \text{ iff } (W, \tau_R) \models \varphi$

- Frame semantics for irreflexive weakly transitive frames is special case of d-semantics
- L_d(Alex) = wK4 (Note: wK4 is logic of irreflexive weakly transitive frames)
- $L_d(Alex_{fin}) = wK4$

Theorem

Let (W, R) be an irreflexive weakly transitive frame In d-semantics

$$(W, R) \models \varphi$$
 iff $(W, \tau_R) \models \varphi$

- Frame semantics for irreflexive weakly transitive frames is special case of d-semantics
- L_d(Alex) = wK4 (Note: wK4 is logic of irreflexive weakly transitive frames)

•
$$L_d(Alex_{fin}) = wK4$$

Theorem

Let (W, R) be an irreflexive weakly transitive frame In d-semantics

$$(W, R) \models \varphi$$
 iff $(W, \tau_R) \models \varphi$

- Frame semantics for irreflexive weakly transitive frames is special case of d-semantics
- L_d(Alex) = wK4 (Note: wK4 is logic of irreflexive weakly transitive frames)

•
$$L_d(Alex_{fin}) = wK4$$

Theorem

Let (W, R) be an irreflexive weakly transitive frame In d-semantics

$$(W, R) \models \varphi$$
 iff $(W, \tau_R) \models \varphi$

- Frame semantics for irreflexive weakly transitive frames is special case of d-semantics
- L_d(Alex) = wK4 (Note: wK4 is logic of irreflexive weakly transitive frames)
- $L_d(Alex_{fin}) = wK4$

Theorem

For a separable metrizable dense-in-itself 0-dimensional space
 X, L_d(X) = K4D

0-dimensional: clopens form basis for au

•
$$L_d(\mathbb{R}^2) = K4D + G_1$$
 where

$$\mathsf{G}_1 = (\Diamond p \land \Diamond \neg p) \to \Diamond ((p \lor \Diamond p) \land (\neg p \lor \Diamond \neg p))$$

$$\bullet \ \mathsf{L}_d(\mathbb{R}) = \mathsf{K4D} + \mathsf{G}_2$$

Remark

As before, move frame completeness to d-semantics via functions

$$f^{-1}(R^{-1}(A)) = d(f^{-1}(A))$$

Completeness in d-Semantics

THEOREM

For a separable metrizable dense-in-itself 0-dimensional space X, L_d(X) = K4D
 0-dimensional: clopens form basis for τ

$$L_d(\mathbb{Q}) = L_d(\mathbf{C}) = \mathbf{K4D}$$

3
$$L_d(\mathbb{R}^2) = K4D + G_1$$
 where

$$\mathsf{G}_1 = (\Diamond p \land \Diamond \neg p) \to \Diamond ((p \lor \Diamond p) \land (\neg p \lor \Diamond \neg p))$$

$$L_d(\mathbb{R}) = \mathsf{K4D} + \mathsf{G}_2$$

Remark

As before, move frame completeness to d-semantics via functions

$$f^{-1}(R^{-1}(A)) = d(f^{-1}(A))$$

Theorem

For a separable metrizable dense-in-itself 0-dimensional space X, L_d(X) = K4D
 0-dimensional: clopens form basis for τ

• $L_d(\mathbb{R}^2) = K4D + G_1$ where

$$\mathsf{G}_1 = (\Diamond p \land \Diamond \neg p) \to \Diamond ((p \lor \Diamond p) \land (\neg p \lor \Diamond \neg p))$$

• $L_d(\mathbb{R}) = K4D + G_2$

Remark

As before, move frame completeness to d-semantics via functions

$$f^{-1}(R^{-1}(A)) = d(f^{-1}(A))$$

Theorem

For a separable metrizable dense-in-itself 0-dimensional space X, L_d(X) = K4D
 0-dimensional: clopens form basis for τ

2
$$L_d(\mathbb{Q}) = L_d(C) = K4D$$

• $L_d(\mathbb{R}^2) = K4D + G_1$ where

$$\mathsf{G}_1 = (\Diamond p \land \Diamond \neg p) \to \Diamond ((p \lor \Diamond p) \land (\neg p \lor \Diamond \neg p))$$

 $L_d(\mathbb{R}) = \mathsf{K4D} + \mathsf{G}_2$

Remark

As before, move frame completeness to d-semantics via functions

$$f^{-1}(R^{-1}(A)) = d(f^{-1}(A))$$

Theorem

For a separable metrizable dense-in-itself 0-dimensional space X, L_d(X) = K4D
 0-dimensional: clopens form basis for τ

2
$$L_d(\mathbb{Q}) = L_d(C) = K4D$$

3
$$L_d(\mathbb{R}^2) = K4D + G_1$$
 where
 $G_1 = (\Diamond p \land \Diamond \neg p) \rightarrow \Diamond ((p \lor \Diamond p) \land (\neg p \lor \Diamond \neg p))$

•
$$\mathsf{L}_d(\mathbb{R}) = \mathsf{K4D} + \mathsf{G}_2$$

Remark

As before, move frame completeness to d-semantics via functions

$$f^{-1}(R^{-1}(A)) = d(f^{-1}(A))$$