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Why Modal Logic

Simplicity

Simple extension of classical propositional logic by

� and ♦

Expressivity: many interpretations of �/♦

1 Necessity/Possibility

2 Obligation/Permission

3 Kripke or relational frames

4 Descriptive frames

5 Algebraic

6 Topological
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Modal Logic
Language and Well Formed Formulas

Symbols

1 Propositional variables/letters: Var = {p0, p1, p2, . . . }
2 Logical connectives: >, ⊥, ¬, ♦, �, ∧, ∨, →
3 Punctuation: ( and )

WFFs

1 Propositional letters and > and ⊥
2 If ϕ,ψ are WFF then so are

(¬ϕ), (♦ϕ), (�ϕ)
(ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ→ ψ)

Note: Drop parenthesis–Unary connectives bind closer than binary;
e.g. write �p → p for ((�p)→ p)
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Modal Logic
Basic Axioms and Inference Rules

Definition

L is a (normal) modal logic if L contains:

1 Classical tautologies: e.g. p ∨ ¬p and p → (q → p)

2 K = �(p → q)→ (�p → �q)

3 �p ↔ ¬♦¬p

and L is closed under the inference rules:

1 Modus Ponens (MP)

2 Substitution (Sub)

3 �-necessitation (N)

(MP)
ϕ, ϕ→ ψ

ψ
(SUB)

ϕ(p)

ϕ(ψ)
(N)

ϕ

�ϕ
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Some Well-known Modal Logics

1 K least modal logic: Logic of all frames
2 K4 = K + ♦♦p → ♦p

logic of transitive (∀w∀v∀u wRv & vRu ⇒ wRu) frames
3 S4 = K4 + p → ♦p

logic of reflexive (∀w wRw) and transitive frames (a.k.a.
quasi-order or preorder)

4 K4D = K4 + ♦>
logic of serial (∀w∃v wRv) transitive frames

Equivalent Formulas

�(p → q)→ (�p → �q)
�(p ∧ q)↔ (�p ∧�q)
♦(p ∨ q)↔ (♦p ∨ ♦q)

�p ↔ ¬♦¬p
♦p ↔ ¬�¬p
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Topological Spaces

Definition

Call (X , τ) a topological space if

τ ⊆ P(X )

1 X ,∅ ∈ τ
2 U,V ∈ τ ⇒ U ∩ V ∈ τ
3 Ui ∈ τ ⇒

⋃
i∈I

Ui ∈ τ for any indexing set I

U open: U ∈ τ
C closed: X − C ∈ τ

Recall

For A ⊆ X there are

Interior The greatest open set contained in A, int(A)
Closure The least closed set containing A, A
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Properties of Interior and Closure

Set operations

int(A) =
⋃
{U ∈ τ : U ⊆ A}

A =
⋂
{C : A ⊆ C and X − C ∈ τ}

Characterization

x ∈ int(A) iff ∃U ∈ τ, x ∈ U and ∀y ∈ U, y ∈ A

x ∈ A iff ∀U ∈ τ, x ∈ U ⇒ ∃y ∈ U, y ∈ A

int(A) = X − X − A

A = X − int(X − A)
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More Properties of Interior and Closure

Set Inclusions

int(A) ⊆ A A ⊆ A
X ⊆ int(X ) ∅ ⊆ ∅

int(A) ⊆ int(int(A)) A ⊆ A

int(A ∩ B) = int(A) ∩ int(B) A ∪ B = A ∪ B
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Diamond as Closure
I

Valuations

A function ν : Var→ P(X ) is a valuation
Intuitively, ν indicates where each WFF, ϕ is true
Formally, for x ∈ X

x |= p iff x ∈ ν(p)
x |= ¬ϕ iff x 6|= ϕ
x |= ϕ ∧ ψ iff x |= ϕ and x |= ψ
x |= �ϕ iff ∃U ∈ τ, x ∈ U and ∀y ∈ U, y |= ϕ

Hence, x |= ♦ϕ iff ∀U ∈ τ, x ∈ U ⇒ ∃y ∈ U, y |= ϕ
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Diamond as Closure
II

Observation: ϕ defines a subset of X

Given ν,
Let ||ϕ|| = {x ∈ X : x |= ϕ}.Then

||♦ϕ|| = ||ϕ||
||�ϕ|| = int(||ϕ||)

Valid Formulas

1 ϕ is valid in X provided ∀ν, ∀x ∈ X , x |= ϕ; write X |= ϕ
Equivalently ||ϕ|| = X for each ν

2 For a class of spaces C, Lc (C) = {ϕ : ∀X ∈ C, X |= ϕ} is a
modal logic (Exercise)

3 Lc (X ) = {ϕ : X |= ϕ} in case C is only one space.
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Expressivity and A Basic Result

Formulas and Properties

p → ♦p A ⊆ A

♦⊥ → ⊥ ∅ ⊆ ∅
♦♦p → ♦p A ⊆ A

♦(p ∨ q)↔ (♦p ∨ ♦q) A ∪ B = A ∪ B

Theorem

Let Top be class of all topological spaces, Lc(Top) = S4.

Lc (Top) ⊇ S4 (Sound)

Lc (Top) ⊆ S4 (Complete)
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Specialization Order and S4-frames
I

Definition

Let (X , τ) ∈ Top
Put xRτy iff x ∈ {y}
Call Rτ the specialization order on X (generated by τ)

Basic Results (exercises)

1 Rτ is a quasi-order

2 If τ is T1 (points are closed) then Rτ = {(x , x) : x ∈ X}

Examples: τ to Rτ

1 Two point spaces: trivial, Sierpinski, discrete ((Rτ )−1 is
closure)

2 Real line R ((Rτ )−1 is not closure)
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Specialization Order and S4-frames
II

Definition

Let (W ,R) be a quasi-order (reflexive and transitive)
Call U ⊆W an R-upset if w ∈ U & wRv ⇒ v ∈ U
Let τR = {U ⊆W : U is R-upset}
Call τR the Alexandrov topology on W (generated by R)

Examples: R to τR

1 Two point frames: cluster, chain, anti-chain (closure is R−1)

2 Two Fork (closure is R−1)

3 (R,≤) (closure is ≤−1)
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Specialization Order and S4-frames
III

Basic Results (exercises)

1 τR is a topology satisfying Ui ∈ τR ⇒
⋂

i∈I Ui ∈ τR

2 In (W , τR), A = R−1(A) = {w ∈W : ∃v ∈ A wRv}
3 If R = {(w ,w) : w ∈W } then τR = P(W )
4 R is partial order iff τR is T0

Partial order is a quasi-order that is antisymmetric
(∀w∀v wRv & vRw ⇒ w = v)
In a T0 space for each pair of distinct points there is an open
set that contains exactly one of the pair
(∀x∀y , ∃U ∈ τ, x ∈ U & y 6∈ U or x 6∈ U & y ∈ U)
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set that contains exactly one of the pair
(∀x∀y , ∃U ∈ τ, x ∈ U & y 6∈ U or x 6∈ U & y ∈ U)
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Alexandrov Spaces

Definition

Call (X , τ) ∈ Top an Alexandrov space provided

Ui ∈ τ ⇒
⋂

i∈I
Ui ∈ τ for any indexing set I

E.g. For (W ,R) a quasi-order, (W , τR) is an Alexandrov space
Let Alex be the class of all Alexandrov spaces

Theorems (exercise)

1 (X , τ) ∈ Alex iff ∀x ∈ X there is least U ∈ τ with x ∈ U

2 R = RτR
and τ ⊆ τRτ

3 If (X , τ) ∈ Alex then τ = τRτ



Basic Definitions Topological c-Semantics Alexandrov Spaces Topological d-Semantics

Alexandrov Spaces

Definition

Call (X , τ) ∈ Top an Alexandrov space provided

Ui ∈ τ ⇒
⋂

i∈I
Ui ∈ τ for any indexing set I

E.g. For (W ,R) a quasi-order, (W , τR) is an Alexandrov space
Let Alex be the class of all Alexandrov spaces

Theorems (exercise)

1 (X , τ) ∈ Alex iff ∀x ∈ X there is least U ∈ τ with x ∈ U

2 R = RτR
and τ ⊆ τRτ

3 If (X , τ) ∈ Alex then τ = τRτ



Basic Definitions Topological c-Semantics Alexandrov Spaces Topological d-Semantics

Alexandrov Spaces

Definition

Call (X , τ) ∈ Top an Alexandrov space provided

Ui ∈ τ ⇒
⋂

i∈I
Ui ∈ τ for any indexing set I

E.g. For (W ,R) a quasi-order, (W , τR) is an Alexandrov space
Let Alex be the class of all Alexandrov spaces

Theorems (exercise)

1 (X , τ) ∈ Alex iff ∀x ∈ X there is least U ∈ τ with x ∈ U

2 R = RτR
and τ ⊆ τRτ

3 If (X , τ) ∈ Alex then τ = τRτ



Basic Definitions Topological c-Semantics Alexandrov Spaces Topological d-Semantics

Alexandrov Spaces

Definition

Call (X , τ) ∈ Top an Alexandrov space provided

Ui ∈ τ ⇒
⋂

i∈I
Ui ∈ τ for any indexing set I

E.g. For (W ,R) a quasi-order, (W , τR) is an Alexandrov space
Let Alex be the class of all Alexandrov spaces

Theorems (exercise)

1 (X , τ) ∈ Alex iff ∀x ∈ X there is least U ∈ τ with x ∈ U

2 R = RτR
and τ ⊆ τRτ

3 If (X , τ) ∈ Alex then τ = τRτ



Basic Definitions Topological c-Semantics Alexandrov Spaces Topological d-Semantics

Alexandrov Spaces

Definition

Call (X , τ) ∈ Top an Alexandrov space provided

Ui ∈ τ ⇒
⋂

i∈I
Ui ∈ τ for any indexing set I

E.g. For (W ,R) a quasi-order, (W , τR) is an Alexandrov space
Let Alex be the class of all Alexandrov spaces

Theorems (exercise)

1 (X , τ) ∈ Alex iff ∀x ∈ X there is least U ∈ τ with x ∈ U

2 R = RτR
and τ ⊆ τRτ

3 If (X , τ) ∈ Alex then τ = τRτ



Basic Definitions Topological c-Semantics Alexandrov Spaces Topological d-Semantics

c-Semantics Realizing Kripke Semantics

Theorem

Let (W ,R) be a quasi-order

(W ,R) |= ϕ iff (W , τR) |= ϕ

Frame semantics for quasi-orders is special case of c-semantics
So frame completeness moves to topological completeness

Lc (Alex) = S4

Lc (Alexfin) = S4
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Completeness

Theorem

1 Lc (Top) = S4

2 Let X be (separable) metrizable dense-in-itself space,
Lc (X ) = S4
dense-in-itself: X has no isolated points, that is {x} 6∈ τ

3 Lc (R2)= Lc (R)= Lc (Q)= Lc (C)= S4

Remark

Idea is to move frame completeness to topological completeness
via functions that make R−1 coincide with closure; i.e.

f −1(R−1(A)) = f −1(A)

Such functions are called interior functions; some examples for R
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Topological Derivative
Limit Point Operator

Recall

Definition: For A ⊆ X ,

x ∈ d(A) iff ∀U ∈ τ, x ∈ U ⇒ ∃y ∈ U − {x}, y ∈ A

Properties:

A = A ∪ d(A)

d(∅) ⊆ ∅
d(A ∪ B) = d(A) ∪ d(B)

d(d(A)) ⊆ A ∪ d(A)
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Topological Derivative
Dual Operator

Definition

Coderivative t is dual to derivative; so ...

t(A) = X − d(X − A)
x ∈ t(A) iff ∃U ∈ τ, x ∈ U & ∀y ∈ U − {x}, y ∈ A

Also

d(A) = X − t(X − A)

int(A) = A ∩ t(A)

t(X ) ⊇ X

t(A ∩ B) = t(A) ∩ t(B)

A ∩ t(A) ⊆ t(t(A))
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Diamond as Derivative
I

Valuations

A valuation is ν : Var→ P(X )

x |= p iff x ∈ ν(p)
x |= ¬ϕ iff x 6|= ϕ
x |= ϕ ∧ ψ iff x |= ϕ and x |= ψ
x |= �ϕ iff ∃U ∈ τ, x ∈ U and ∀y ∈ U − {x}, y |= ϕ
Hence,
x |= ♦ϕ iff ∀U ∈ τ, x ∈ U ⇒ ∃y ∈ U − {x}, y |= ϕ
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Diamond as Derivative
II

As Before: ϕ defines a subset of X

Given ν,
Put ||ϕ|| = {x ∈ X : x |= ϕ}. Then

||♦ϕ|| = d(||ϕ||)
||�ϕ|| = t(||ϕ||)

Validity

1 ϕ is valid in X provided ∀ν, ||ϕ|| = X
2 Ld (C) = {ϕ : ∀X ∈ C, X |= ϕ} is a modal logic for any class

of spaces C (Exercise)

3 If L = Ld(C) for some class C of spaces, call L a d-logic

4 If L = Lc(C) for some class C of spaces, call L a c-logic
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Some Topological Properties

Recall (Exercises)

1 (X , τ) is dense-in-itself (dii) if X has no isolated points
(∀x ∈ X , {x} 6∈ τ)
Equivalently...

d(X ) = X

2 (X , τ) is Td provided points are locally closed
(∀x ∈ X ∃U ∈ τ, {x} = U ∩ {x})
Equivalently... ∀A ⊆ X ,

d(d(A)) ⊆ d(A)
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Expressivity in d-Semantics

Formulas and Properties

Always Valid:

♦⊥ → ⊥ d(∅) ⊆ ∅
♦♦p → p ∨ ♦p d(d(A)) ⊆ A ∪ d(A)

♦(p ∨ q)↔ (♦p ∨ ♦q) d(A ∪ B) = d(A) ∪ d(B)

Sometimes Valid:

♦♦p → ♦p d(d(A)) ⊆ d(A) (Td )

♦> d(X ) = X (dii)

Never Valid:

p → ♦p A ⊆ d(A)

So d-semantics is strictly more expressive than c-semantics!
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Some Results in d-Semantics

Theorem

1 Ld (Top) = wK4 = K + ♦♦p → p ∨ ♦p

2 Ld ({X ∈ Top : X is Td}) = K4

3 Ld ({X ∈ Top : X is dii and Td}) = K4D

As Before:

Utilize results in frame semantics
But the new situation is more delicate
Recall closure ‘was’ R−1... Want similar for d

Examples:

1 2 point spaces: trivial and Sierpinski

2 Distinguish between line and plane

d(A) ∩ d(X − A) ⊆ d(A ∩ X − A)
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Basic Definitions Topological c-Semantics Alexandrov Spaces Topological d-Semantics

Analogue to Specialization Order
I

Definition

Call (W ,R) weakly transitive if
∀w∀v∀u wRv & vRu & w 6= u ⇒ wRu

Lemma (Exercise)

(W ,R) is weakly transitive iff (W ,R) |= ♦♦p → (p ∨ ♦p)

Definition

For (X , τ) ∈ Top, put xSτy iff x ∈ d({y})

Basic Results (Exercises)

1 (X , Sτ ) is weakly transitive and irreflexive (no point is related
to itself)

2 Sτ = Rτ − {(x , x) : x ∈ X} (recall Rτ is specialization order)
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1 SτR
⊆ R

2 τSτ = τRτ

Hence...

τ ⊆ τSτ

τSτ
is Alexandrov topology

3 If R is irreflexive and weakly transitive then

SτR
= R

d(A) = R−1(A) in (W , τR )

4 If X is Alexandrov then τ = τSτ
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special case of d-semantics

Ld (Alex) = wK4
(Note: wK4 is logic of irreflexive weakly transitive frames)

Ld (Alexfin) = wK4
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Completeness in d-Semantics

Theorem

1 For a separable metrizable dense-in-itself 0-dimensional space
X , Ld (X ) = K4D
0-dimensional: clopens form basis for τ

2 Ld (Q)= Ld (C)= K4D

3 Ld (R2) = K4D + G1 where
G1 = (♦p ∧ ♦¬p)→ ♦((p ∨ ♦p) ∧ (¬p ∨ ♦¬p))

4 Ld (R) = K4D + G2

Remark

As before, move frame completeness to d-semantics via functions

f −1(R−1(A)) = d(f −1(A))

Example via R
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