"Unification in finite MV-algebras with constants"

Ramaz Liparteliani

Tbilisi State University, Georgia

Tbilisi 2012
(1) Introduction

- Definitions.
(2) Varieties and Free Algebras
- Representation of Algebras.
- Representation of Free Algebras.
(3) Projective Algebras and Formulae
- Logic
- Projective Algebras
- Projective Formulae

4 Unification Problems

- Inefficient way:
- Normal forms
- Sketch of Efficient Algorithm

MV-algebras.

An $M V$-algebra is a structure $\left(A, \oplus, \otimes,{ }^{*}, 0,1\right)$ with properties:

- $(A, \oplus, 0)$ is a commutative monoid
- $(x \otimes y)=\left(x^{*} \oplus y^{*}\right)^{*}$
- * is an involution: $\left(x^{*}\right)^{*}=x^{*}$
- $x \oplus 1=1$
- $0^{*}=1$
- $\left(x^{*} \oplus y\right)^{*} \oplus y=\left(y^{*} \oplus x\right)^{*} \oplus x,(x \vee y=y \vee x)$

Axioms for $M V$-algebras.

- $x \oplus y=y \oplus x$
- $x \oplus(y \oplus z)=(x \oplus y) \oplus z$
- $x \oplus 1=1$
- $x \oplus 0=x$
- $x \otimes y=\left(x^{*} \oplus y^{*}\right)^{*}$
- $x=\left(x^{*}\right)^{*}$
- $0^{*}=1$
- $\left(x^{*} \oplus y\right)^{*} \oplus y=\left(x \oplus y^{*}\right) \oplus x$

Example:

$\left([0,1], \oplus, \otimes,{ }^{*}, 0,1\right)$:

- $(x \oplus y)=\min (1, x+y)$
- $(x \otimes y)=\max (0, x+y-1)$
- $x^{*}=1-x$

For $M V_{m}$-algebras we have following additional properties:

Axioms for $M V_{m}$-algebras

- $(m-1) x \oplus x=(m-1) x$
- $\left[(j x) \otimes\left(x^{*} \oplus[(j-1) x]^{*}\right)\right]^{m-1}=0$ for $m>3,1<j<m-1$ and j does not divide $m-1$

Example:

$\left(\left[0, \frac{1}{m-1}, \ldots, \frac{m-2}{m-1}, 1\right], \oplus, \otimes, *, 0,1\right):$

- $(x \oplus y)=\min (1, x+y)$
- $(x \otimes y)=\max (0, x+y-1)$
- $x^{*}=1-x$
$\left(A, \oplus, \otimes,{ }^{*}, 0=C_{0}, C_{1}, \ldots, C_{n-2}, 1=C_{n-1}\right)$
Axioms for $M V S_{n}$-algebras
- $i C_{1}=C_{i}, i=(2, \ldots, n-1)$
- $C_{1}=C_{n-2}^{*}$

Subalgebra:

$$
C_{i} \oplus C_{j}=C_{k}
$$

- $C_{i} \otimes C_{j}=C_{k-n+1}$
- $C_{i}^{*}=C_{n-1-i}$.

Here $k=\min (n-1, i+j)$.

Example:

$S=\left([0,1], \oplus, \otimes,{ }^{*}, 0, C_{1}, \ldots, C_{n-2}, 1\right)$
$C_{i}(x)=\frac{i}{n-1}$

$M V_{m} S_{n}$ algebras

- Defined for such m-s, that $n-1$ divides $m-1$
- $M V_{m}$-algebra axioms.
- Axioms for C_{i} operators.

From here on by $M V_{m} S_{n}$, we consider that $n-1$ divides $m-1$.

Proposition:

The only subdirectly irreducible algebras in variety $\mathbf{M} \mathbf{V}_{\mathbf{m}} \mathbf{S}_{\mathbf{n}}$:
$S(k)=\left(\left\{0, \frac{1}{k-1}, \frac{2}{k-1}, \ldots, \frac{k-2}{k-1}, 1\right\}, \oplus, \otimes,{ }^{*}, 0, C_{1}, \ldots, C_{n-2}, 1\right)$,
where $n-1$ divides $k-1$ and $k-1$ divides $m-1$.

Corollary:

Every $M V_{m} S_{n}$-algebra A is isomorphic to the subdirect product of $S(k)=\left(\left\{0, \frac{1}{k-1}, \frac{2}{k-1}, \ldots, \frac{k-2}{k-1}, 1\right\}, \oplus, \otimes,{ }^{*}, 0, C_{1}, \ldots, C_{n-2}, 1\right)$ where $n-1$ divides $k-1$ and $k-1$ divides $m-1$.

$$
A \hookrightarrow \prod_{k: n-1|k-1 \& k-1| m-1} S(k)
$$

Recall that every identity $P\left(x_{1}, \ldots, x_{k}\right)=Q\left(x_{1}, \ldots, x_{k}\right)$ is an identity of $\mathbf{M V} \mathbf{m}_{\mathbf{n}}$ iff the corresponding polynomials $P\left(x_{1}, \ldots, x_{k}\right)$ and $Q\left(x_{1}, \ldots, x_{k}\right)$ are equal to each other in the k-generated free algebra $F_{M V_{m} S_{n}}(k)$ on its free generators $P\left(g_{1}, \ldots, g_{k}\right)=Q\left(g_{1}, \ldots, g_{k}\right)$.

Recursive Sequence:

- $p_{n}(n, k)=n^{k}$
- $p_{n}(i, k)=i^{k}-\sum_{n \leq j<i}^{j-1 \mid i-1} p_{n}(j, k)$

Example:

- $p_{4}(4, k)=4^{k}$
- $p_{4}(7, k)=7^{k}-4^{k}$
- $p_{4}(13, k)=13^{k}-\left(7^{k}-4^{k}\right)-5^{k}-4^{k}=13^{k}-7^{k}-5^{k}$

Theorem

k-generated free $M V_{m} S_{n}$-algebra over the variety $\mathbf{M V}_{\mathbf{m}} \mathbf{S}_{\mathbf{n}}$:

$$
F_{M V_{m} S_{n}}(k)=\prod_{j \geq n}^{j-1 \mid m-1} S_{j}^{p_{n}(j, k)}
$$

Example:

$$
F_{M V_{13} S_{4}}(k)=S_{4}^{4^{k}} \times S_{5}^{5^{k}} \times S_{7}^{7^{k}-4^{k}} \times S_{13}^{13^{k}-7^{k}-4^{k}}
$$

Another Recursive Set:

$$
J=\left\{j_{i} \mid i=1,2, \ldots\right\}
$$

- $j_{1}=n$
- $\left(j_{i}-1\right)$ divides $\left(j_{i+1}-1\right)$

Example:

$$
J=\left\{n, 2 n-1,4 n-3,8 n-7, \ldots, 2^{i} n-2^{i}+1, \ldots\right\}
$$

Theorem:

Let $g_{1}^{\left(j_{i}\right)}, \ldots, g_{k}^{\left(j_{i}\right)}$ be free generators of the k-generated free algebras $F_{M V_{j} s_{n}}(k)$ and $s_{m}=\left(g_{m}^{\left(j_{1}\right)}, g_{m}^{\left(j_{2}\right)}, \ldots\right)$. The subalgebra $F_{M V s_{n}}(k)$ of the direct limit $\prod_{j_{i} \in J} F_{M V_{j i} s_{n}}(k)$ generated by $s_{m} \in \prod_{j_{i} \in J} F_{M V_{j i}} s_{n}(k)(m=1, \ldots, k)$ is a free $M V S_{n}$-algebra.

Direct Limit:

$$
F_{M V_{j} s_{n}}(k) \mapsto \ldots F_{M V_{i j}} s_{n}(k) \mapsto \ldots \mapsto \prod_{j_{i} \in J} F_{M V_{i} s_{n}} s_{n}(k) \hookleftarrow F_{M V s_{n}}(k)
$$

Generators:

$$
\begin{aligned}
& s_{1}=\left(g_{1}^{\left(j_{1}\right)}, g_{1}^{\left(j_{2}\right)}, \ldots g_{1}^{\left(j_{i}\right)}, \ldots\right) \\
& s_{2}=\left(\begin{array}{llllll}
g_{2}^{\left(j_{1}\right)} & g_{1}^{\left(j_{2}\right)} & , & \ldots & g_{2}^{\left(j_{i}\right)}, & \ldots
\end{array}\right) \\
& s_{k}=\left(g_{k}^{\left(j_{1}\right)}, g_{k}^{\left(j_{2}\right)}, \quad \ldots g_{k}^{\left(j_{i}\right)}, \quad \ldots\right)
\end{aligned}
$$

Proposition:

In the algebra S_{n} we can construct the cyclic operator by means of the $M V_{m} S_{n}$-algebra operations:

$$
f(x)=((n-1) x)^{*} \vee\left(x \otimes C_{n-2}\right)
$$

Theorem

Algebra S_{n} is functionally equivalent to n-valued Post algebra.

Logic $L_{m} C_{n}$:

The language consists of:

1) propositional variables p, q, r and with indices;
2) connectives: $\rightarrow, \neg, C_{0}, C_{1}, \ldots, C_{n-2}, C_{n-1}$.

Formulas are built in usual way. Denote set of all formulae by Φ.

The axioms of the logic:

- Lukasiewicz logic axioms
- axioms translating the ones for operators $C_{i}(i=0, \ldots n-1)$.

Inference rule: $\alpha, \alpha \rightarrow \beta / \beta$ (Modus Ponens)

Definition:

Lindenbaum algebra L is constructed in usual way. Define the equivalence relation $\equiv: \alpha \equiv \beta$ iff $\vdash \alpha \rightarrow \beta$ and $\vdash \beta \rightarrow \alpha$. It is clear that $[\alpha / \equiv]=[\beta / \equiv]$ iff $\vdash \alpha \leftrightarrow \beta$.

Completeness:

The function $\nu: \Phi \rightarrow S_{n}$ is called a value function if:
i) the function is defined for every formula $\alpha \in \Phi$.
ii) for every propositional variable $p \quad \nu(p) \in S_{n}$.
iii)if α and β are formulas, then
$\nu(\alpha \rightarrow \beta)=\nu(\alpha) \rightarrow \nu(\beta)=\nu(\alpha)^{*} \oplus \nu(\beta) ; \nu(\neg \alpha)=\nu(\alpha)^{*}$;
$\nu(\alpha \vee \beta)=\nu(\alpha) \vee \nu(\beta)=\left(\nu(\alpha) \otimes \nu(\beta)^{*}\right) \oplus \nu(\beta) ;$
$\nu(\alpha \wedge \beta)=\nu(\alpha) \wedge \nu(\beta)=\left(\nu(\alpha) \oplus \nu(\beta)^{*}\right) \otimes \nu(\beta) ;$
$\nu\left(C_{i}\right)=C_{i} \quad i=0, \ldots, n-1$
A formula α is called tautology if $\nu(\alpha)=1$ for every value function ν.

Completeness:

A formula α is a theorem of logic if and only if α is a tautology.

Some Definitions:

$\Psi_{k}=\left\{p_{1}, \ldots, p_{k}\right\}$
$\Phi_{k}=\left\{\alpha: \alpha\right.$ is a formula with variables in $\left.\Psi_{k}\right\}$

Theorem:

$F_{M V_{m} S_{n}}(k) \cong \Phi_{k} / \equiv$.

Definition:

An algebra $A \in \mathbf{K}$ is called projective, if for any $B, C \in \mathbf{K}$, any epimorphism (onto homomorphism) $\beta: B \rightarrow C$ and any homomorphism $\gamma: A \rightarrow C$, there exists a homomorphism $\alpha: A \rightarrow B$ such that $\beta \alpha=\gamma$

Definition:

A subalgebra A of free algebra $F_{V}(k)$ is called a projective subalgebra of $F_{V}(k)$ if there exists an endomorphism $h: F_{V}(k) \rightarrow F_{V}(k)$ such that $h\left(F_{V}(k)\right)=A$ and $h(x)=x$ for every $x \in A$.

Theorem

Algebra A is projective in the variety $\mathbf{M} \mathbf{V}_{\mathbf{m}} \mathbf{S}_{\mathbf{n}}$ if it is isomorphic to the algebra $S_{n} \times A^{\prime}$ where A^{\prime} is some $M V_{m} S_{n}$-algebra.

$$
A \equiv S_{n} \times A^{\prime}
$$

Theorem:

Every subalgebra of the free k-generated algebra $F_{M V_{m} S_{n}}(k)$ is projective.

Theorem:

Every endomorphic image of the free k-generated algebra $F_{M V_{m} S_{n}}(k)$ is projective.

Definition:

A formula $\alpha \in \Phi_{k}$ is called projective if there exists a substitution $\sigma: \Psi_{k} \rightarrow \Phi_{k}$ such that $\vdash \sigma(\alpha)$ and $\alpha \vdash \beta \leftrightarrow \sigma(\beta)$, for all $\beta \in \Phi_{k}$.

Theorem:

For every k-generated projective $M V_{m} S_{n}$-algebra, there exists a projective formula α of k-variables, such that A is isomorphic to $\Phi_{k} /[\alpha)$, where $[\alpha)$ is the principal filter generated by $\alpha \in \Phi_{k}$.

Theorem:

For every projective formula α of k-variables, $\Phi_{k} /[\alpha)$ is a projective algebra.

Corollary:

There exists a one-to-one correspondence between projective formulas with k-variables and k-generated projective subalgebras of Φ_{k}.

E-Unification:

Given a pair of terms $s, t \in T_{n}$ we call the substitution $\sigma: T_{n} \Rightarrow T_{\omega}$ an E-unifier of s, t if

$$
E \models \sigma(s) \approx \sigma(t)
$$

less/more general unifications:

Given substitutions $\sigma, \sigma^{\prime}: T_{n} \Rightarrow T_{\omega}$ we say σ is less general (Mod E) than σ^{\prime} and write $\sigma \preceq \sigma^{\prime}$ if there exists a substitution $\tau: T_{\omega} \Rightarrow T_{\omega}$ such that

$$
E \models \sigma\left(x_{i}\right) \approx \tau \circ \sigma^{\prime}\left(x_{i}\right)(1 \leq i \leq n) .
$$

E-equivalent substitutions:

$\sigma \sim_{E} \sigma^{\prime}$ iff $\sigma \preceq \sigma^{\prime}$ and $\sigma^{\prime} \preceq \sigma$

most general unifiers:

We call unifier σ a most general unifier (E-unifier) ($m g u$ for short) if for any unification τ,

$$
\sigma \preceq \tau \text { implies } \sigma \sim_{E} \tau
$$

Unificators:

Suppose we have to find unifiers for $f\left(x_{1}, \ldots, x_{k}\right)$.
(1) We evaluate the formula on the elements of the k-generated free algebra: $f\left(a_{1}, \ldots, a_{k}\right)$
(2) For all evaluations that are equal to 1 , we take the polynomials: $a_{i}=P\left(g_{1}, g_{2}, \ldots, g_{k}\right)$
(3) Needed Unifications: $x_{i} \mapsto P\left(y_{1}, y_{2}, \ldots, y_{k}\right)$

Theorem:

Unification type in considered cases are unitary.

Proposition:

All the algebras considered here are symmetric (DeMorgan duality), so solving the unification problem for $f(X)=1$ is equivalent to solving the problem for $f(X)=0$

Definition:

Define n different functions $\dagger_{i}: S_{n} \rightarrow S_{n}$:
$\dagger_{i}(x)= \begin{cases}1, & \text { if } x=C_{i} \\ 0, & \text { if } x \neq C_{i}\end{cases}$

Example:

In case of $n=2, S_{n}$ coinsides with the Boolean algebra:

- $\dagger_{1}(x)=x$
- $\dagger_{0}(x)=\bar{x}$
- $f(x)=\bar{x} f(0) \vee x f(1)$

CDNF:

Let f be a k-ary function on $S_{n} . f: S_{n}^{k} \rightarrow S_{n}$:

$$
f\left(x_{1}, \ldots, x_{k}\right)=\bigvee_{i_{1}, \ldots, i_{k} \in S_{n}}\left(\bigwedge_{j=1}^{k} \dagger_{i_{j}} x_{j} \wedge f\left(i_{1}, \ldots, i_{k}\right)\right)
$$

Example:
$(x \oplus y) \otimes z \otimes z \otimes x^{*}$

Example:

$f(x, y, z)=\left(\dagger_{0} x \wedge \dagger_{1} y \wedge \dagger_{2} z \wedge C_{1}\right) \vee\left(\dagger_{0} x \wedge \dagger_{2} y \wedge \dagger_{1} z \wedge C_{2}\right) \vee\left(\dagger_{1} x \wedge\right.$ $\left.\dagger_{1} y \wedge \dagger_{2} z \wedge C_{1}\right) \vee\left(\dagger_{1} x \wedge \dagger_{0} y \wedge \dagger_{0} z \wedge C_{1}\right) \vee\left(\dagger_{2} x \wedge \dagger_{2} y \wedge \dagger_{2} z \wedge C_{1}\right)$

Definition:

Cofactor of f w.r. to literal $\dagger_{i} x$ is obtained by substitution:

- $\dagger_{i} x$ by 1.
- $\dagger_{j} x$ by 0 , for $j \neq i$.

Denote cofactor by $f_{\mathrm{t}_{i} x}$
Our example:
$f_{\dagger_{0} x}=\left(\dagger_{1} y \wedge \dagger_{2} z \wedge C_{1}\right) \vee\left(\dagger_{2} y \wedge \dagger_{1} z\right)$
$f_{\dagger_{1} x}=\left(\dagger_{1} y \wedge \dagger_{2} z \wedge C_{1}\right) \vee\left(\dagger_{0} y \wedge \dagger_{0} z \wedge C_{1}\right)$
$f_{\dagger_{2} x}=\dagger_{2} y \wedge \dagger_{2} z \wedge C_{1}$

Variable Conjunctive Eliminant:

- $\operatorname{VCE}(f, 0)=f$.
- $\operatorname{VCE}(f,\{x\})=f_{\text {tox }} \wedge f_{\mathrm{t}_{1} x} \wedge \ldots \wedge f_{\mathrm{t}_{n-1} x}$.
- $\operatorname{VCE}(f, A \cup B)=\operatorname{VCE}(\operatorname{VCE}(f, A), B)$.

Overview of Method:

X-Inputs; G-Parametric functions; P-Parameters:
Equation: $f(X)=0$
Solution:

$$
\left\{\begin{array}{l}
g_{0}=0 \\
X=G(P)
\end{array}\right.
$$

With following conditions:

$$
\left\{\begin{array}{l}
g_{0}=\operatorname{VCE}(f, X) \\
f(G(P))=\operatorname{VCE}(f, X), \forall P \in S_{n}^{k} \\
f(A)=\operatorname{VCE}(f, X) \Longrightarrow \exists P \in S_{n}^{k}, G(P)=A
\end{array}\right.
$$

Work in Progress:

- Complete efficient Algorithm for the n-valued case;
- Complexity of the above algorithms.

