"Unification in finite MV-algebras with constants"

Ramaz Liparteliani

Tbilisi State University, Georgia

Tbilisi 2012

Outline

2 Varieties and Free Algebras

- Representation of Algebras.
- Representation of Free Algebras.

Projective Algebras and Formulae

- Logic
- Projective Algebras
- Projective Formulae

Unification Problems

- Inefficient way:
- Normal forms
- Sketch of Efficient Algorithm

MV-algebras.

An *MV*-algebra is a structure $(A, \oplus, \otimes, *, 0, 1)$ with properties:

• $(A, \oplus, 0)$ is a commutative monoid

•
$$(x \otimes y) = (x^* \oplus y^*)^*$$

• * is an involution:
$$(x^*)^* = x^*$$

- *x* ⊕ 1 = 1
- 0* = 1

•
$$(x^* \oplus y)^* \oplus y = (y^* \oplus x)^* \oplus x, (x \lor y = y \lor x)$$

Axioms for *MV*-algebras.

- $x \oplus y = y \oplus x$
- $x \oplus (y \oplus z) = (x \oplus y) \oplus z$
- $x \oplus 1 = 1$
- $x \oplus 0 = x$
- $x \otimes y = (x^* \oplus y^*)^*$
- $x = (x^*)^*$
- 0* = 1
- $(x^* \oplus y)^* \oplus y = (x \oplus y^*) \oplus x$

Example:

 $([0,1],\oplus,\otimes,^*,0,1):$

•
$$(x \oplus y) = min(1, x + y)$$

•
$$(x \otimes y) = max(0, x + y - 1)$$

•
$$x^* = 1 - x$$

For MV_m -algebras we have following additional properties:

Axioms for *MV*_m-algebras

•
$$(m-1)x \oplus x = (m-1)x$$

•
$$[(jx) \otimes (x^* \oplus [(j-1)x]^*)]^{m-1} = 0$$

for $m > 3$, $1 < j < m-1$ and j does not divide $m-1$

$$\left(\left[0,\frac{1}{m-1},...,\frac{m-2}{m-1},1\right],\oplus,\otimes,^*,0,1\right)$$
:

•
$$(x \oplus y) = min(1, x + y)$$

•
$$(x \otimes y) = max(0, x + y - 1)$$

•
$$x^* = 1 - x$$

$$(A, \oplus, \otimes, *, 0 = C_0, C_1, ..., C_{n-2}, 1 = C_{n-1})$$

Axioms for *MVS_n*-algebras

•
$$iC_1 = C_i, i = (2, ..., n-1)$$

•
$$C_1 = C_{n-2}^*$$

Subalgebra:

•
$$C_i \oplus C_j = C_k$$

•
$$C_i \otimes C_j = C_{k-n+1}$$

•
$$C_i^* = C_{n-1-i}$$
.

Here
$$k = min(n - 1, i + j)$$
.

$$S = ([0, 1], \oplus, \otimes, ^*, 0, C_1, ..., C_{n-2}, 1)$$

$$C_i(x) = \frac{i}{n-1}$$

MV_mS_n algebras

- Defined for such *m*-s, that n 1 divides m 1
- *MV_m*-algebra axioms.
- Axioms for C_i operators.

From here on by MV_mS_n , we consider that n-1 divides m-1.

Proposition:

The only subdirectly irreducible algebras in variety MV_mS_n:

$$S(k) = (\{0, \frac{1}{k-1}, \frac{2}{k-1}, ..., \frac{k-2}{k-1}, 1\}, \oplus, \otimes,^*, 0, C_1, ..., C_{n-2}, 1),$$

where n - 1 divides k - 1 and k - 1 divides m - 1.

Corollary:

Every MV_mS_n -algebra A is isomorphic to the subdirect product of $S(k) = (\{0, \frac{1}{k-1}, \frac{2}{k-1}, ..., \frac{k-2}{k-1}, 1\}, \oplus, \otimes, ^*, 0, C_1, ..., C_{n-2}, 1)$ where n - 1 divides k - 1 and k - 1 divides m - 1.

$$A \hookrightarrow \prod_{k:n-1|k-1 \& k-1|m-1} S(k)$$

Recall that every identity $P(x_1, ..., x_k) = Q(x_1, ..., x_k)$ is an identity of $\mathbf{MV_mS_n}$ iff the corresponding polynomials $P(x_1, ..., x_k)$ and $Q(x_1, ..., x_k)$ are equal to each other in the k-generated free algebra $F_{MV_mS_n}(k)$ on its free generators $P(g_1, ..., g_k) = Q(g_1, ..., g_k)$.

Recursive Sequence:

•
$$p_n(n,k) = n^k$$

• $p_n(i,k) = i^k - \sum_{\substack{n \le j < i \\ n \le j < i}}^{j-1|i-1} p_n(j,k)$

•
$$p_4(4,k) = 4^k$$

•
$$p_4(7,k) = 7^k - 4^k$$

•
$$p_4(13,k) = 13^k - (7^k - 4^k) - 5^k - 4^k = 13^k - 7^k - 5^k$$

Theorem

k-generated free MV_mS_n -algebra over the variety MV_mS_n :

$$F_{MV_mS_n}(k) = \prod_{j\geq n}^{j-1|m-1} S_j^{p_n(j,k)}$$

$$\mathcal{F}_{MV_{13}S_4}(k) = S_4^{4^k} imes S_5^{5^k} imes S_7^{7^k-4^k} imes S_{13}^{13^k-7^k-4^k}$$

Another Recursive Set:

$$J = \{j_i | i = 1, 2, ...\}$$

$$J = \{n, 2n - 1, 4n - 3, 8n - 7, ..., 2^{i}n - 2^{i} + 1, ...\}$$

Theorem:

Let $g_1^{(j_i)}, ..., g_k^{(j_i)}$ be free generators of the k-generated free algebras $F_{MV_{j_i}S_n}(k)$ and $s_m = (g_m^{(j_1)}, g_m^{(j_2)}, ...)$. The subalgebra $F_{MVS_n}(k)$ of the direct limit $\prod_{j_i \in J} F_{MV_{j_i}S_n}(k)$ generated by $s_m \in \prod_{j_i \in J} F_{MV_{j_i}S_n}(k)$ (m = 1, ..., k) is a free MVS_n -algebra.

Direct Limit:

$$F_{MV_{j_1}S_n}(k) \mapsto ...F_{MV_{j_i}S_n}(k) \mapsto ... \mapsto \prod_{j_i \in J} F_{MV_{j_i}S_n}(k) \leftrightarrow F_{MVS_n}(k)$$

Proposition:

In the algebra S_n we can construct the cyclic operator by means of the MV_mS_n -algebra operations:

$$f(x) = ((n-1)x)^* \vee (x \otimes C_{n-2}).$$

Theorem

Algebra S_n is functionally equivalent to n-valued Post algebra.

Logic $L_m C_n$:

The language consists of: 1) propositional variables p,q,r and with indices; 2) connectives: \rightarrow , \neg , $C_0, C_1, ..., C_{n-2}, C_{n-1}$.

Formulas are built in usual way. Denote set of all formulae by Φ .

The axioms of the logic:

- Lukasiewicz logic axioms
- axioms translating the ones for operators C_i (i = 0, ..., n 1).

Inference rule: $\alpha, \alpha \rightarrow \beta/\beta$ (Modus Ponens)

Definition:

Lindenbaum algebra *L* is constructed in usual way. Define the equivalence relation \equiv : $\alpha \equiv \beta$ iff $\vdash \alpha \rightarrow \beta$ and $\vdash \beta \rightarrow \alpha$. It is clear that $[\alpha / \equiv] = [\beta / \equiv]$ iff $\vdash \alpha \leftrightarrow \beta$.

Completeness:

The function $\nu : \Phi \to S_n$ is called a value function if: i) the function is defined for every formula $\alpha \in \Phi$. ii) for every propositional variable $p \quad \nu(p) \in S_n$. iii) if α and β are formulas, then $\nu(\alpha \to \beta) = \nu(\alpha) \to \nu(\beta) = \nu(\alpha)^* \oplus \nu(\beta); \nu(\neg \alpha) = \nu(\alpha)^*;$ $\nu(\alpha \lor \beta) = \nu(\alpha) \lor \nu(\beta) = (\nu(\alpha) \otimes \nu(\beta)^*) \oplus \nu(\beta);$ $\nu(\alpha \land \beta) = \nu(\alpha) \land \nu(\beta) = (\nu(\alpha) \oplus \nu(\beta)^*) \otimes \nu(\beta);$ $\nu(C_i) = C_i \quad i = 0, ..., n - 1$ A formula α is called tautology if $\nu(\alpha) = 1$ for every value function ν .

Completeness:

A formula α is a theorem of logic if and only if α is a tautology.

Some Definitions:

 $\begin{aligned} \Psi_k &= \{ p_1, ..., p_k \} \\ \Phi_k &= \{ \alpha : \alpha \text{ is a formula with variables in } \Psi_k \} \end{aligned}$

Theorem:

$$F_{MV_mS_n}(k) \cong \Phi_k / \equiv.$$

Definition:

An algebra $A \in \mathbf{K}$ is called projective, if for any $B, C \in \mathbf{K}$, any epimorphism (onto homomorphism) $\beta : B \to C$ and any homomorphism $\gamma : A \to C$, there exists a homomorphism $\alpha : A \to B$ such that $\beta \alpha = \gamma$

Definition:

A subalgebra *A* of free algebra $F_V(k)$ is called a projective subalgebra of $F_V(k)$ if there exists an endomorphism $h: F_V(k) \to F_V(k)$ such that $h(F_V(k)) = A$ and h(x) = x for every $x \in A$.

Theorem

Algebra *A* is projective in the variety $\mathbf{MV_mS_n}$ if it is isomorphic to the algebra $S_n \times A'$ where A' is some MV_mS_n -algebra.

 $A \equiv S_n \times A'$

Theorem:

Every subalgebra of the free *k*-generated algebra $F_{MV_mS_n}(k)$ is projective.

Theorem:

Every endomorphic image of the free *k*-generated algebra $F_{MV_mS_n}(k)$ is projective.

Definition:

A formula $\alpha \in \Phi_k$ is called projective if there exists a substitution $\sigma : \Psi_k \to \Phi_k$ such that $\vdash \sigma(\alpha)$ and $\alpha \vdash \beta \leftrightarrow \sigma(\beta)$, for all $\beta \in \Phi_k$.

Theorem:

For every *k*-generated projective MV_mS_n -algebra, there exists a projective formula α of *k*-variables, such that *A* is isomorphic to $\Phi_k/[\alpha)$, where $[\alpha)$ is the principal filter generated by $\alpha \in \Phi_k$.

Theorem:

For every projective formula α of *k*-variables, $\Phi_k/[\alpha)$ is a projective algebra.

Corollary:

There exists a one-to-one correspondence between projective formulas with *k*-variables and *k*-generated projective subalgebras of Φ_k .

E-Unification:

Given a pair of terms $s,t \in T_n$ we call the *substitution* $\sigma: T_n \Rightarrow T_\omega$ an *E*-unifier of *s*, *t* if

$$E \models \sigma(s) \approx \sigma(t).$$

less/more general unifications:

Given substitutions $\sigma, \sigma' : T_n \Rightarrow T_\omega$ we say σ is *less general* (Mod *E*) than σ' and write $\sigma \preceq \sigma'$ if there exists a substitution $\tau : T_\omega \Rightarrow T_\omega$ such that

$$E \models \sigma(x_i) \approx \tau \circ \sigma'(x_i) (1 \le i \le n).$$

E-equivalent substitutions:

 $\sigma \sim_{\textit{E}} \sigma' \text{ iff } \sigma \preceq \sigma' \text{ and } \sigma' \preceq \sigma$

most general unifiers:

We call unifier σ a *most general unifier* (*E*-unifier) (*mgu* for short) if for any unification τ ,

 $\sigma \preceq \tau \text{ implies } \sigma \sim_{\textit{E}} \tau$

Unificators:

Suppose we have to find unifiers for $f(x_1, ..., x_k)$.

- We evaluate the formula on the elements of the k-generated free algebra: $f(a_1, ..., a_k)$
- 2 For all evaluations that are equal to 1, we take the polynomials: $a_i = P(g_1, g_2, ..., g_k)$
- 3 Needed Unifications: $x_i \mapsto P(y_1, y_2, ..., y_k)$

Theorem:

Unification type in considered cases are unitary.

Proposition:

All the algebras considered here are symmetric (DeMorgan duality), so solving the unification problem for f(X) = 1 is equivalent to solving the problem for f(X) = 0

Definition:

Define *n* different functions $\dagger_i : S_n \to S_n :$ $\dagger_i(x) = \begin{cases} 1, & \text{if } x = C_i \\ 0, & \text{if } x \neq C_i \end{cases}$

Example:

In case of n = 2, S_n coinsides with the Boolean algebra:

•
$$\dagger_1(x) = x$$

•
$$\dagger_0(x) = \bar{x}$$

• $f(x) = \bar{x}f(0) \vee xf(1)$

CDNF:

Let *f* be a *k*-ary function on S_n . $f : S_n^k \to S_n$:

$$f(x_1,...,x_k) = \bigvee_{i_1,...,i_k \in S_n} (\bigwedge_{j=1}^k \dagger_{i_j} x_j \wedge f(i_1,...,i_k))$$

Example:

 $(x \oplus y) \otimes z \otimes z \otimes x^*$

Example:

 $f(x, y, z) = (\dagger_0 x \land \dagger_1 y \land \dagger_2 z \land C_1) \lor (\dagger_0 x \land \dagger_2 y \land \dagger_1 z \land C_2) \lor (\dagger_1 x \land \dagger_1 y \land \dagger_2 z \land C_1) \lor (\dagger_1 x \land \dagger_0 y \land \dagger_0 z \land C_1) \lor (\dagger_2 x \land \dagger_2 y \land \dagger_2 z \land C_1)$

Definition:

Cofactor of *f* w.r. to literal $\dagger_i x$ is obtained by substitution:

- †_{*i*}*x* by 1.
- $\dagger_j x$ by 0, for $j \neq i$.

Denote cofactor by $f_{\dagger_i X}$

Our example:

$$f_{\dagger_0 x} = (\dagger_1 y \land \dagger_2 z \land C_1) \lor (\dagger_2 y \land \dagger_1 z) \\ f_{\dagger_1 x} = (\dagger_1 y \land \dagger_2 z \land C_1) \lor (\dagger_0 y \land \dagger_0 z \land C_1) \\ f_{\dagger_2 x} = \dagger_2 y \land \dagger_2 z \land C_1$$

Variable Conjunctive Eliminant:

- VCE(f, 0) = f.
- $VCE(f, \{x\}) = f_{\dagger_0 x} \wedge f_{\dagger_1 x} \wedge \ldots \wedge f_{\dagger_{n-1} x}.$
- $VCE(f, A \cup B) = VCE(VCE(f, A), B).$

Overview of Method:

 $\begin{array}{l} X\text{-Inputs; } G\text{-Parametric functions; } P\text{-Parameters:} \\ \text{Equation: } f(X) = 0 \\ \text{Solution:} \\ \begin{cases} g_0 = 0 \\ X = G(P) \\ \text{With following conditions:} \\ \\ g_0 = VCE(f, X) \\ f(G(P)) = VCE(f, X), \forall P \in S_n^k \\ f(A) = VCE(f, X) \Longrightarrow \exists P \in S_n^k, G(P) = A \\ \end{cases}$

Work in Progress:

- Complete efficient Algorithm for the n-valued case;
- Complexity of the above algorithms.