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MV -algebras.
An MV -algebra is a structure (A,⊕,⊗,∗ ,0,1) with properties:

(A,⊕,0) is a commutative monoid
(x ⊗ y) = (x∗ ⊕ y∗)∗
∗ is an involution: (x∗)∗ = x∗

x ⊕ 1 = 1
0∗ = 1
(x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x , (x ∨ y = y ∨ x)



Axioms for MV -algebras.
x ⊕ y = y ⊕ x
x ⊕ (y ⊕ z) = (x ⊕ y)⊕ z
x ⊕ 1 = 1
x ⊕ 0 = x
x ⊗ y = (x∗ ⊕ y∗)∗

x = (x∗)∗

0∗ = 1
(x∗ ⊕ y)∗ ⊕ y = (x ⊕ y∗)⊕ x



Example:
([0,1],⊕,⊗,∗ ,0,1):

(x ⊕ y) = min(1, x + y)

(x ⊗ y) = max(0, x + y − 1)

x∗ = 1− x



For MVm-algebras we have following additional properties:

Axioms for MVm-algebras
(m − 1)x ⊕ x = (m − 1)x
[(jx)⊗ (x∗ ⊕ [(j − 1)x ]∗)]m−1 = 0
for m > 3, 1 < j < m − 1 and j does not divide m − 1



Example:(
[0, 1

m−1 , ...,
m−2
m−1 ,1],⊕,⊗,∗ ,0,1

)
:

(x ⊕ y) = min(1, x + y)

(x ⊗ y) = max(0, x + y − 1)

x∗ = 1− x



(A,⊕,⊗,∗ ,0 = C0,C1, ...,Cn−2,1 = Cn−1)

Axioms for MVSn-algebras
iC1 = Ci , i = (2, ...,n − 1)

C1 = C∗n−2



Subalgebra:
Ci ⊕ Cj = Ck

Ci ⊗ Cj = Ck−n+1

C∗i = Cn−1−i .

Here k = min(n − 1, i + j).

Example:
S = ([0,1],⊕,⊗,∗ ,0,C1, ...,Cn−2,1)

Ci(x) = i
n−1



MVmSn algebras
Defined for such m-s, that n − 1 divides m − 1

MVm-algebra axioms.

Axioms for Ci operators.

From here on by MVmSn, we consider that n − 1 divides m − 1.



Proposition:
The only subdirectly irreducible algebras in variety MVmSn:

S(k) = ({0, 1
k−1 ,

2
k−1 , ...,

k−2
k−1 ,1},⊕,⊗,

∗ ,0,C1, ...,Cn−2,1),

where n − 1 divides k − 1 and k − 1 divides m − 1.



Corollary:
Every MVmSn-algebra A is isomorphic to the subdirect product
of S(k) = ({0, 1

k−1 ,
2

k−1 , ...,
k−2
k−1 ,1},⊕,⊗,

∗ ,0,C1, ...,Cn−2,1)
where n − 1 divides k − 1 and k − 1 divides m − 1.

A ↪→
∏

k :n−1|k−1&k−1|m−1
S(k)



Recall that every identity P (x1, ..., xk ) = Q (x1, ..., xk ) is an
identity of MVmSn iff the corresponding polynomials
P (x1, ..., xk ) and Q (x1, ..., xk ) are equal to each other in the
k-generated free algebra FMVmSn (k) on its free generators
P (g1, ...,gk ) = Q (g1, ...,gk ).



Recursive Sequence:

pn(n, k) = nk

pn(i , k) = ik −
j−1|i−1∑
n≤j<i

pn(j , k)

Example:

p4(4, k) = 4k

p4(7, k) = 7k − 4k

p4(13, k) = 13k − (7k − 4k )− 5k − 4k = 13k − 7k − 5k



Theorem
k -generated free MVmSn-algebra over the variety MVmSn:

FMVmSn (k) =
j−1|m−1∏

j≥n
Spn(j,k)

j

Example:

FMV13S4(k) = S4k

4 × S5k

5 × S7k−4k

7 × S13k−7k−4k

13



Another Recursive Set:
J = {ji |i = 1,2, ...}

j1 = n
(ji − 1) divides (ji+1 − 1)

Example:

J = {n,2n − 1,4n − 3,8n − 7, ...,2in − 2i + 1, ...}



Theorem:

Let g(ji )
1 , ...,g(ji )

k be free generators of the k-generated free
algebras FMVji

Sn (k) and sm = (g(j1)
m ,g(j2)

m , ...). The subalgebra
FMVSn (k) of the direct limit

∏
ji∈J

FMVji
Sn (k) generated by

sm ∈
∏
ji∈J

FMVji
Sn (k) (m = 1, ..., k ) is a free MVSn-algebra.



Direct Limit:
FMVj1

Sn (k) 7→ ...FMVji
Sn (k) 7→ ... 7→

∏
ji∈J

FMVji
Sn (k)←↩ FMVSn (k)

Generators:

s1 = ( g(j1)
1 , g(j2)

1 , ... g(ji )
1 , ... )

s2 = ( g(j1)
2 , g(j2)

2 , ... g(ji )
2 , ... )

. . . . . . . . . . . .

sk = ( g(j1)
k , g(j2)

k , ... g(ji )
k , ... )



Proposition:
In the algebra Sn we can construct the cyclic operator by
means of the MVmSn-algebra operations:

f (x) = ((n − 1)x)∗ ∨ (x ⊗ Cn−2).

Theorem
Algebra Sn is functionally equivalent to n-valued Post algebra.



Logic LmCn:
The language consists of:
1) propositional variables p,q,r and with indices;
2) connectives: →,¬,C0,C1, ...,Cn−2,Cn−1.

Formulas are built in usual way. Denote set of all formulae by Φ.

The axioms of the logic:
Lukasiewicz logic axioms
axioms translating the ones for operators Ci(i = 0, ...n− 1).

Inference rule: α, α→ β/β (Modus Ponens)



Definition:
Lindenbaum algebra L is constructed in usual way. Define the
equivalence relation ≡: α ≡ β iff ` α→ β and ` β → α. It is
clear that [α/ ≡] = [β/ ≡] iff ` α↔ β.



Completeness:
The function ν : Φ→ Sn is called a value function if:
i) the function is defined for every formula α ∈ Φ.
ii) for every propositional variable p ν (p) ∈ Sn.
iii)if α and β are formulas, then
ν (α→ β) = ν (α)→ ν (β) = ν (α)∗ ⊕ ν (β); ν (¬α) = ν (α)∗;
ν (α ∨ β) = ν (α) ∨ ν (β) = (ν (α)⊗ ν (β)∗)⊕ ν (β);
ν (α ∧ β) = ν (α) ∧ ν (β) = (ν (α)⊕ ν (β)∗)⊗ ν (β);
ν (Ci) = Ci i = 0, ...,n − 1
A formula α is called tautology if ν (α) = 1 for every value
function ν.



Completeness:
A formula α is a theorem of logic if and only if α is a tautology.



Some Definitions:
Ψk = {p1, ...,pk}
Φk = {α : α is a formula with variables in Ψk}

Theorem:
FMVmSn (k) ∼= Φk/ ≡.



Definition:
An algebra A ∈ K is called projective, if for any B,C ∈ K, any
epimorphism (onto homomorphism) β : B → C and any
homomorphism γ : A→ C, there exists a homomorphism
α : A→ B such that βα = γ

Definition:
A subalgebra A of free algebra FV (k) is called a projective
subalgebra of FV (k) if there exists an endomorphism
h : FV (k)→ FV (k) such that h(FV (k)) = A and h(x) = x for
every x ∈ A.



Theorem
Algebra A is projective in the variety MVmSn if it is isomorphic
to the algebra Sn × A

′
where A

′
is some MVmSn-algebra.

A ≡ Sn × A
′



Theorem:
Every subalgebra of the free k -generated algebra FMVmSn (k) is
projective.

Theorem:
Every endomorphic image of the free k -generated algebra
FMVmSn (k) is projective.



Definition:
A formula α ∈ Φk is called projective if there exists a
substitution σ : Ψk → Φk such that ` σ (α) and α ` β ↔ σ (β),
for all β ∈ Φk .



Theorem:
For every k -generated projective MVmSn-algebra, there exists a
projective formula α of k -variables, such that A is isomorphic to
Φk/[α), where [α) is the principal filter generated by α ∈ Φk .

Theorem:
For every projective formula α of k -variables, Φk/[α) is a
projective algebra.

Corollary:
There exists a one-to-one correspondence between projective
formulas with k -variables and k -generated projective
subalgebras of Φk .



E-Unification:
Given a pair of terms s,t ∈ Tn we call the substitution
σ : Tn ⇒ Tω an E-unifier of s, t if

E |= σ(s) ≈ σ(t).

less/more general unifications:

Given substitutions σ, σ′ : Tn ⇒ Tω we say σ is less general
(Mod E) than σ′ and write σ � σ′ if there exists a substitution
τ : Tω ⇒ Tω such that

E |= σ(xi) ≈ τ ◦ σ′(xi)(1 ≤ i ≤ n).



E-equivalent substitutions:
σ ∼E σ′ iff σ � σ′ and σ′ � σ

most general unifiers:
We call unifier σ a most general unifier (E-unifier) (mgu for
short) if for any unification τ ,

σ � τ implies σ ∼E τ



Unificators:
Suppose we have to find unifiers for f (x1, ..., xk ).

1 We evaluate the formula on the elements of the
k-generated free algebra: f (a1, ...,ak )

2 For all evaluations that are equal to 1, we take the
polynomials: ai = P(g1,g2, ...,gk )

3 Needed Unifications: xi 7→ P(y1, y2, ..., yk )



Theorem:
Unification type in considered cases are unitary.



Proposition:
All the algebras considered here are symmetric (DeMorgan
duality), so solving the unification problem for f (X ) = 1 is
equivalent to solving the problem for f (X ) = 0



Definition:
Define n different functions †i : Sn → Sn :

†i(x) =

{
1, if x = Ci

0, if x 6= Ci

Example:
In case of n = 2, Sn coinsides with the Boolean algebra:

†1(x) = x
†0(x) = x̄
f (x) = x̄ f (0) ∨ xf (1)



CDNF:

Let f be a k -ary function on Sn. f : Sk
n → Sn :

f (x1, ..., xk ) =
∨

i1,...,ik∈Sn

(
k∧

j=1
†ij xj ∧ f (i1, ..., ik ))

Example:
(x ⊕ y)⊗ z ⊗ z ⊗ x∗

Example:
f (x , y , z) = (†0x ∧†1y ∧†2z∧C1)∨ (†0x ∧†2y ∧†1z∧C2)∨ (†1x ∧
†1y ∧ †2z ∧C1) ∨ (†1x ∧ †0y ∧ †0z ∧C1) ∨ (†2x ∧ †2y ∧ †2z ∧C1)



Definition:
Cofactor of f w.r. to literal †ix is obtained by substitution:

†ix by 1.
†jx by 0, for j 6= i .

Denote cofactor by f†i x

Our example:
f†0x = (†1y ∧ †2z ∧ C1) ∨ (†2y ∧ †1z)
f†1x = (†1y ∧ †2z ∧ C1) ∨ (†0y ∧ †0z ∧ C1)
f†2x = †2y ∧ †2z ∧ C1



Variable Conjunctive Eliminant:
VCE(f ,0) = f .
VCE(f , {x}) = f†0x ∧ f†1x ∧ ... ∧ f†n−1x .
VCE(f ,A ∪ B) = VCE(VCE(f ,A),B).



Overview of Method:
X -Inputs; G-Parametric functions; P-Parameters:
Equation: f (X ) = 0
Solution:{

g0 = 0
X = G(P)

With following conditions:
g0 = VCE(f ,X )

f (G(P)) = VCE(f ,X ), ∀P ∈ Sk
n

f (A) = VCE(f ,X ) =⇒ ∃P ∈ Sk
n ,G(P) = A



Work in Progress:
Complete efficient Algorithm for the n-valued case;
Complexity of the above algorithms.
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