International Workshop on Topological Methods in Logic III

Dedicated to the memory of Dito Pataraia July 23—27, 2012 Tbilisi, Georgia

On fínítely generated free and projective monadic Gödel algebras

Revaz Grigolia

Tbilisi State University, revaz.grigolia@tsu.ge

Modal Intuitionistic Propositional Calculus (*MIPC*) is the well-known modal intuitionistic propositional calculus introduced by Prior

[A. Prior, *Time and Modality*, Clarendon Press, Oxford, 1957]

in order to give a satisfactory axiomatization of the one-variable fragment of Intuitionistic Predicate Logic.

On the other hand, *MIPC* is considered as one of the most acceptable intuitionistic formalizations of *S5*.

The language of the logic *MIPC*

 \rightarrow , \lor , \land , \bot , \Box , \Diamond

Axioms of the logic *MIPC* are the following:

$$\begin{array}{ll} (\mathsf{MIL1}) & \alpha \to (\beta \to \alpha), \\ (\mathsf{MIL2}) & (\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma)), \\ (\mathsf{MIL3}) & (\alpha \land \beta) \to \alpha, \\ (\mathsf{MIL3}) & (\alpha \land \beta) \to \beta, \\ (\mathsf{MIL4}) & (\alpha \land \beta) \to \beta, \\ (\mathsf{MIL5}) & \alpha \to (\beta \to (\alpha \land \beta)), \\ (\mathsf{MIL5}) & \alpha \to (\alpha \lor \beta), \\ (\mathsf{MIL6}) & \alpha \to (\alpha \lor \beta), \\ (\mathsf{MIL7}) & \alpha \to (\beta \lor \alpha), \\ (\mathsf{MIL8}) & (\alpha \to \gamma) \to ((\beta \to \gamma) \to ((\alpha \lor \beta) \to \gamma)), \\ (\mathsf{MIL8}) & (\alpha \to \gamma) \to ((\beta \to \gamma) \to ((\alpha \lor \beta) \to \gamma)), \\ (\mathsf{MIL9}) & \bot \to \alpha \end{array}$$

$$(A1) \Box \alpha \to \alpha,$$

$$\alpha \to \Diamond \alpha$$

$$(A2) (\Box \alpha \land \Box \beta) \to \Box (\alpha \land \beta),$$

$$\diamond (\alpha \lor \beta) \to (\diamond \alpha \lor \diamond \beta)$$

$$(A3) \diamond \alpha \to \Box \diamond \alpha,$$

$$\diamond \Box \alpha \to \Box \alpha$$

$$(A4) \Box (\alpha \to \beta) \to (\diamond \alpha \to \diamond \beta)$$

Inference rules:

Modus Ponens: $\alpha, \alpha \rightarrow \beta \Rightarrow \beta$ Necessitation Rule: $\alpha \Rightarrow \Box \alpha$

$$\begin{array}{l} (\mathsf{MG1}) \ \alpha \rightarrow (\beta \rightarrow \alpha), \\ (\mathsf{MG2}) \ (\alpha \rightarrow (\beta \rightarrow \gamma)) \rightarrow ((\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma)), \\ (\mathsf{MG3}) \ (\alpha \wedge \beta) \rightarrow \alpha, \\ (\mathsf{MG4}) \ (\alpha \wedge \beta) \rightarrow \beta, \\ (\mathsf{MG5}) \ \alpha \rightarrow (\beta \rightarrow (\alpha \land \beta)), \\ (\mathsf{MG6}) \ \alpha \rightarrow (\alpha \lor \beta), \\ (\mathsf{MG7}) \ \alpha \rightarrow (\beta \lor \alpha), \\ (\mathsf{MG8}) \ (\alpha \rightarrow \gamma) \rightarrow ((\beta \rightarrow \gamma) \rightarrow ((\alpha \lor \beta) \rightarrow \gamma)), \\ (\mathsf{MG9}) \ \perp \rightarrow \alpha \\ (\mathsf{MG10}) \ (\alpha \rightarrow \beta) \lor (\beta \rightarrow \alpha) \end{array}$$

(A1)
$$\Box \alpha \rightarrow \alpha$$
,
 $\alpha \rightarrow \diamond \alpha$
(A2) $(\Box \alpha \land \Box \beta) \rightarrow \Box (\alpha \land \beta)$,
 $\diamond (\alpha \lor \beta) \rightarrow (\diamond \alpha \lor \diamond \beta)$
(A3) $\diamond \alpha \rightarrow \Box \diamond \alpha$,
 $\diamond \Box \alpha \rightarrow \Box \alpha$
(A4) $\Box (\alpha \rightarrow \beta) \rightarrow (\diamond \alpha \rightarrow \diamond \beta)$

Let *L* be a first-order language based on \rightarrow , \lor , \land , \bot , \forall , \exists

and L_m monadic propositional langauage based on

$$ightarrow$$
, $ightarrow$, $ightarrow$, $ightarrow$, $ightarrow$, $ightarrow$,

and Form(L) and $Form(L_m)$ – the set of formulas of L and L_m , respectively.

We fix a variable x in L, associate with each propositional letter p in L_m a unique monadic predicate $p^*(x)$ in L and define by induction a translation

$$\Psi$$
: Form(L_m) \rightarrow Form(L)

by putting:

- $\Psi(p) = p^*(x)$ if p is propositional variable,
- $\Psi(\alpha \circ \beta) = \Psi(\alpha) \circ \Psi(\beta)$, where $\circ = \rightarrow, \lor, \land$,
- $\Psi(\Box \alpha) = \forall x \ \Psi(\alpha)$,
- $\Psi(\Diamond \alpha) = \exists x \ \Psi(\alpha).$

Through this translation Ψ , we can identify the formulas of L_m with monadic formulas of Lcontaining the variable x. **Monadic Gödel Algebras**

A monadic (Boolean) algebra is a Boolean algebra A together with an operator \exists on A (called an existential quantifier, or, simply, a quantifier) such that

$\exists 0=0, x \leq \exists x, \exists (x \land \exists y) = \exists x \land \exists y$

whenever x and y are in A. A systematic study of monadic algebras appears in

[Paul R. Halmos, *Algebraic Logic*, I. *Monadic Boolean Algebras*, Composotio Mathematica, vol. 12 (1955), pp. 217-249.]

Monadic Gödel Algebras

- Operators such as ∃ had occurred before in, for instance, Lewis' studies of modal logic and Tarski's studies of algebraic logic.
- One motivation for studying monadic algebras is the desire to understand certain aspects of mathematical logic; the connection with logic is also the source of much of the terminology and notation used in the theory.

Monadic Heyting Algebras

The full developing of the theory of monadic Heyting Algebras was given by G. Bezhanisvili in his PhD Thesis and following to them the serial of papers. One of them

[G. Bezhanishvili and R. Grigolia, "*Locally tabular extensions of MIPC*", Proceedings of Uppsala Symposium ", Advances in Modal Logic'98", vol. 2, Csli Publications, Stanford, California, 101-120 (2001)]

Monadic Heyting Algebras

We call an universal algebra

 $(H, \land, \lor, \rightarrow, \Box, \Diamond, 0, 1)$

monadic Heyting algebra, if $(H, \land, \lor, \rightarrow, 0, 1)$ is a Heyting algebra and in addition it satisfies the following identities:

- (MH1) $\Box x \leq x, x \leq \Diamond x$,
- (MH2) $(\Box x \land \Box y) \leq \Box (x \land y), \quad \Diamond (x \lor y) \leq (\Diamond x \lor \Diamond y),$
- (MH3) $\Diamond x \leq \Box \&, \land \Box x \leq \Box x$,
- (MH4) $\Box(x \rightarrow y) \leq (\Diamond x \rightarrow \Diamond y).$

Monadic Gödel Algebras

We call an universal algebra

$$(H, \land, \lor, \rightarrow, \Box, \Diamond, 0, 1)$$

monadic Gödel algebra, if it is monadic Heyting algebra and in addition it satisfies the following identities:

$$(x \rightarrow y) \lor (y \rightarrow x) = 1.$$

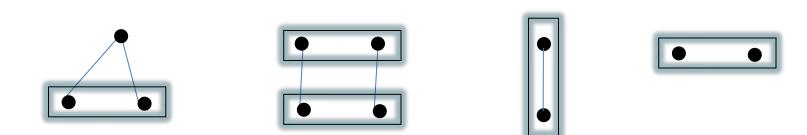
A triple (X,R,Q) is an MIPC-frame if R is a partial order on X ≠Ø and Q a qvasi-order on X such that

 $R \subseteq Q$ and $\forall x, y \in X (xQy \Rightarrow \exists z \in X(xRz \& zE_Qy))$, where zE_Qy iff zQy and yQz, i. e. z and ybelong to the same Q-cluster. A general frame for *MIPC* is a quadruple (X,R,Q,P), where (X,R,Q) is a *MIPC*-frame and *P* a family of *R*-cones in *X* which contains \emptyset and is closed under \cup , \cap , and the operations:

$$Y \rightarrow Z = -R^{-1}(X - Y), \ \Box Y = -Q^{-1} - Y,$$

$$\Diamond Y = E_Q(Y) = Q(Y).$$

If (X,R) is a root system, then P forms a Gödel algebra.



• A frame (X, R, Q, P) is *refined* when $\neg(xRy)$ only if there is a $Y \in P$ such that $x \in Y$ and $y \notin Y$, and $\neg(xQy)$ only if there is a Q-cone $Y \in P$ such that $x \in Y$ and $y \notin Y$. A frame (X,R,Q,P) is *compact* if for all $T \subseteq P$ and $S \subseteq \{-Y : Y \in P\}$, if $T \cup S$ has the finite intersection property, then $\bigcap (T \cup S) \neq \emptyset$.

 Refined and compact frames are called *descriptive*. It is known from that every logic L over *MIPC* is complete with respect to descriptive frames for L.

Let MG be the variety of all monadic Gödel algebras.

 Notice that finite *MIPC*-frame is descriptive. Recall that a quasi-order (*X*,*R*) is of *R*-*depth n* if it contains an *R*-chain

$$x_1 R \dots R x_n$$

of *n* points from distinct *R*-clusters but not such chain of greater length.

Let L be an extension of the logic MG. A logic L is said to be of R-depth n if there exists an MIPC-frame of R-depth n but there is no MIPC-frame of R-greater depth. L is called a finite R-depth logic if L is a logic of R-depth n, for some n<ω.

Consider the list of formulas: $P_0: \perp;$ $P_n: q_n \lor (q_n \rightarrow P_{n-1}), n \ge 1.$

Proposition 1. A logic *L* is of *R*-depth *n* iff $L \mid -P_n$ and $L \not\mid -P_{n-1}$.

Analogical way we can define a subvariety **L** of *R*-depth *n* of the variety **MG**: **L** is a subvariety of *R*-depth *n* if in **L** hold identities $P_n = 1$ and does not hold $P_{n-1} = 1$.

Proposition 2. The subvariety MG_n of the variety MG is a subvariety of *R*-depth *n*.

The equivalence relation *E* on the descriptive MIPCframe is called *correct* [G. Bezhanishvili and R. Grigolia, "*Locally tabular extensions of MIPC*", Proceedings of Uppsala Symposium ", Advances in Modal Logic'98", vol. 2, Csli Publications, Stanford, California, 101-120 (2001)] if

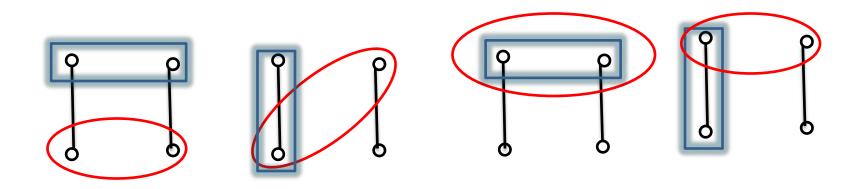
- *E*-saturation of any cone is a cone;
- If ¬(xEy), then there exists U∈P such that an E(U) = U and either x∈U and y∉U, or x∉U and y∈U.
- $RE(x) \subset ER(x)$ for every $x \in X$;
- $QE(x) \subset EQ(x)$ for every $x \in X$;
- $EQ(x) \subset QER(x)$ for every $x \in X$;

- The concept of correct partition of Intuitionistic (or *S*4-) frame is introduced in
- [L. Esakia and R. Grigolia, The criterion of Browerian and closure algebras to be finitely generated, Bull. Sect. Logic, 6, 2, (1973), 46-52.].
- A partition X/E of X is said to be *correct* if the equivalence relation E satisfies the following conditions:

- *E* is a closed equivalence relation, *i*. *e*. *E*-saturation of any closed subset is closed;
- *E*-saturation of any upper cone is an upper cone;
- there is D-frame (Y,Q) and a strongly isotone $map f: X \rightarrow Y$ such that Kerf = E.

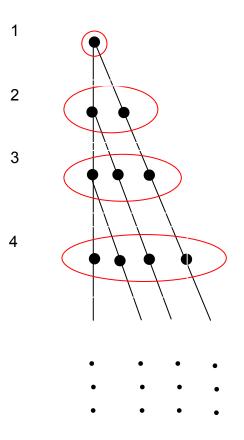
 There exists one-to-one correspondence between subalgebras of an MG–algebra A and correct partition of the corresponding to it general frame X_A.

EXAMPLS



Incorrect

Correct

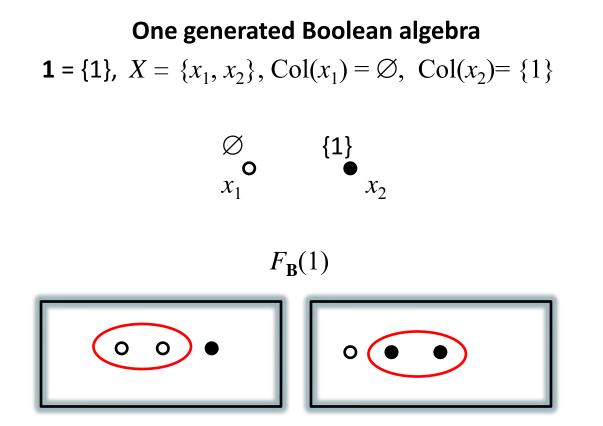


Suppose (X,R,Q,P) is a descriptive MIPC-frame and g₁, ..., g_n ∈ P.
Denote by *n* the set {1, ..., n}.
Let G_p = g₁^{ε₁} ∩ ... ∩ g_n^{ε_n}, where ε_i ∈ {0,1}, p = { i: ε_i = 1} and

$$g_i^{\varepsilon_i} = \begin{cases} g_i, & \varepsilon_i = 1 \\ -g_i, & \varepsilon_i = 0 \end{cases}$$

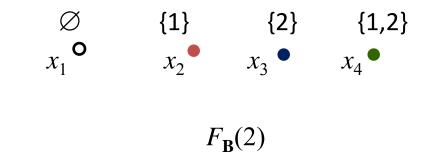
• Call a frame (X,R,Q,P) *n-generated* if there exist $X_1, ..., X_n \in P$ such that every element of *P* is obtained from $X_1, ..., X_n$ by the operations $\cup, \cap, \rightarrow, \Box, \Diamond$. A frame (X,R,Q,P)is said to be *finitely generated* if (X,R,Q,P) is *n*-generated for some *n*.

- It is obvious that $\{G_p\}_{p \subseteq n}$ is a partition of Xwhich we call the colouring of X. A given $x \in G_p$ is said to have colour p, written Col(x) = p.
- **Theorem 3.** (Colouring Theorem) (X,R,Q,P) is n-generated by $g_1, ..., g_n \in P$ iff for every nontrivial correct partition E of X, there exists an equivalence class of E containing the points of different colours.



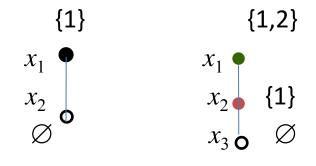
Two generated Boolean algebra

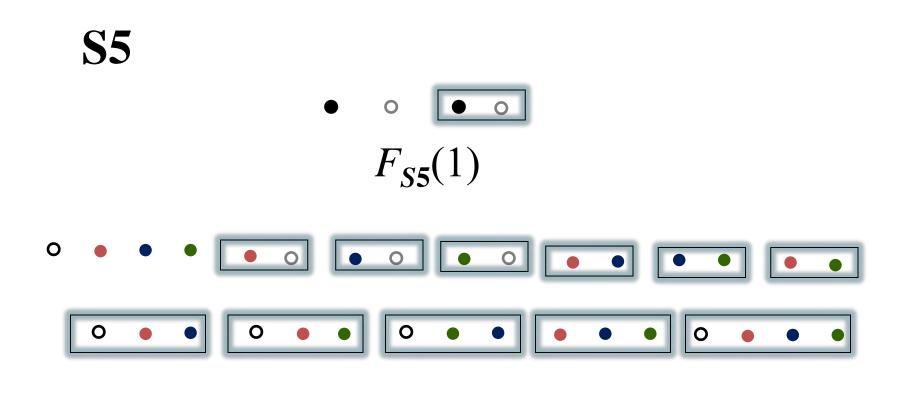
 $\mathbf{2} = \{1, 2\}, \ X = \{x_1, x_2, x_3, x_4\},$ $\operatorname{Col}(x_1) = \emptyset, \ \operatorname{Col}(x_2) = \{1\}, \ \operatorname{Col}(x_3) = \{2\}, \ \operatorname{Col}(x_4) = \{1, 2\}$



One and two generated Heyting algebra

 $1 = \{1\}, X_1 = \{x_1, x_2\}; \qquad 2 = \{1, 2\}, X_2 = \{x_1, x_2, x_3\}$ $Col(x_1) = \{1\}, Col(x_2) = \emptyset; Col(x_1) = \{1, 2\}, Col(x_2) = \{1\}, Col(x_2) = \emptyset$



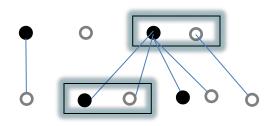


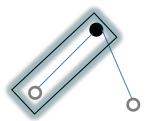
 $F_{S5}(2)$

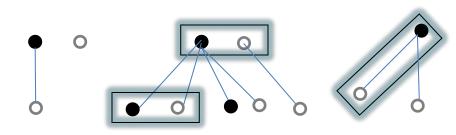
Now we represent one-generated free algebra $F_{MG}(1)$ by means of colouring general MIPC-frame. We have the following colouring:

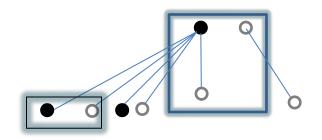
1 = {1},
$$Col(x) = \emptyset$$
 or $Col(x) = \{1\}$.

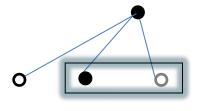
We denote \emptyset colour by \circ and $\{1\}$ colour by \bullet .

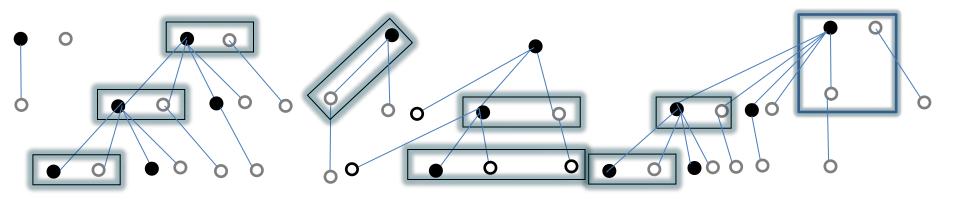




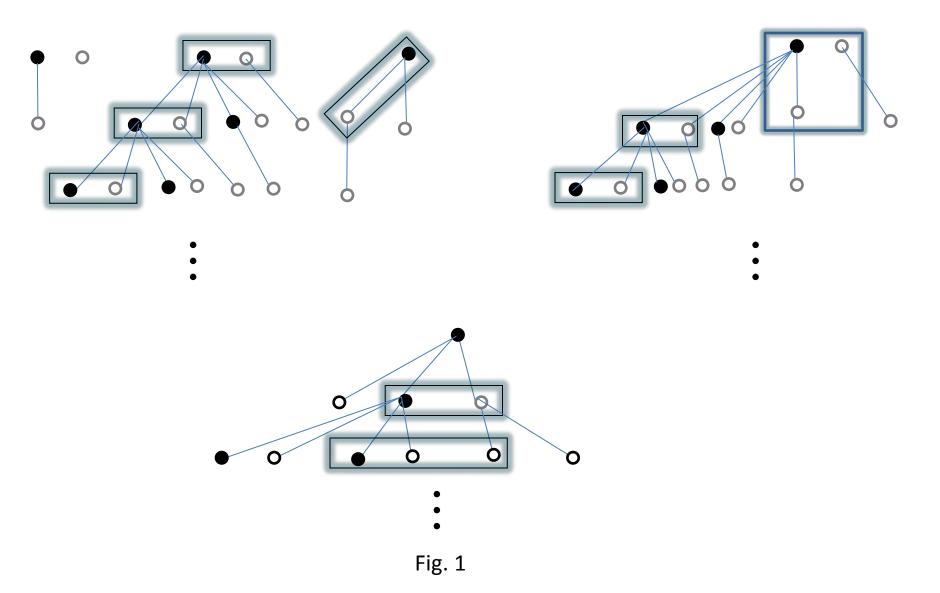


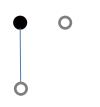


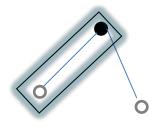




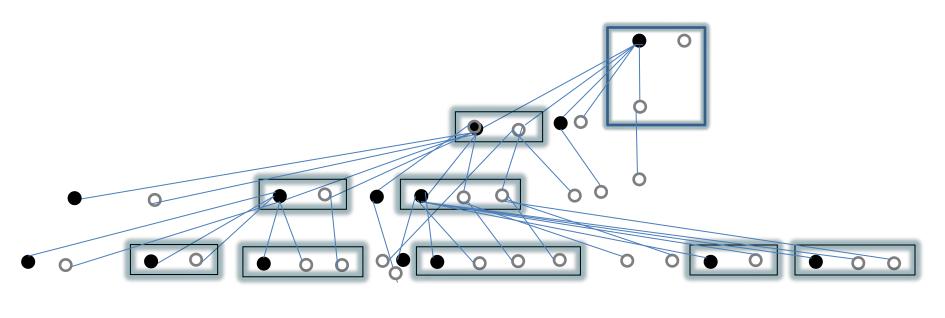
Let \mathbf{K} be a variety of algebras. Recall that an algebra $A \in \mathbf{K}$ is said to be *a free algebra* in \mathbf{K} , if there exists a set $A_0 \subset A$ such that A_0 generates A and every map f from A_0 to any algebra $B \in \mathbf{K}$ is extended to a homomorphism *h* from A to B. In this case A_0 is said to be the set of free generators of A. If the set of free generators is finite then A is said to be a free algebra of finitely many generators. The *n*-generated free algebra in **K** is denoted by $F_{\mathbf{K}}(n)$.





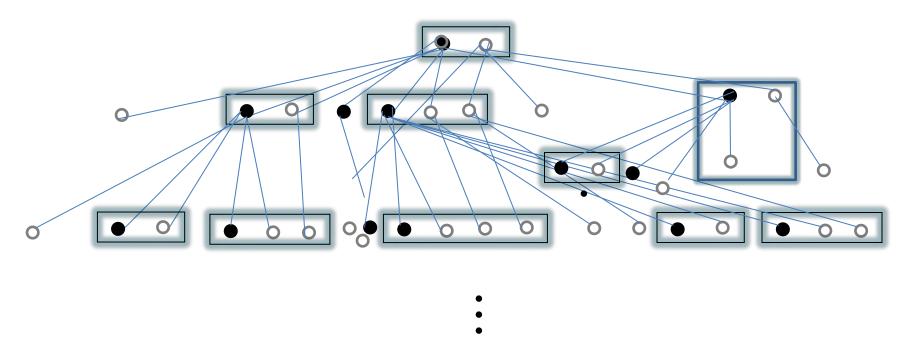


$Y_{2}(1)$

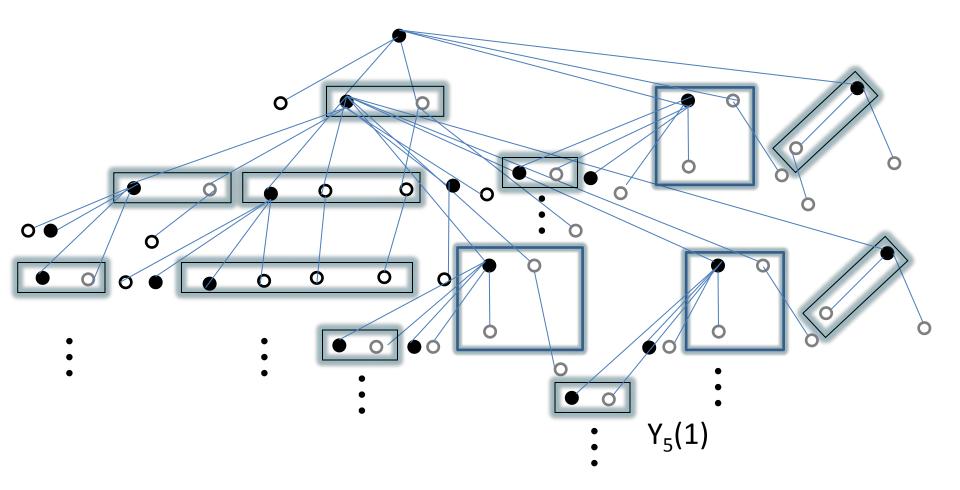


- - •

Y₃(1)



 $Y_4(1)$



Let $Y(1) = Y_1(1) \cup Y_2(1) \cup Y_3(1) \cup Y_4(1) \cup Y_5(1)$ and G the set of elements of Y(1) having (black) colour {1}.

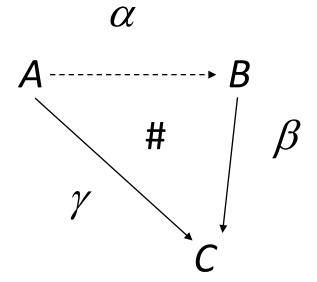
Theorem 4. Monadic Gödel algebra generated by the element $G \subseteq Y(1)$ is the free onegenerated monadic Gödel algebra.

Projective algebras

Let **K** be a variety of algebras.

Definition. An algebra $A \in \mathbf{K}$ is called projective, if for any $B, C \in \mathbf{K}$, any epimorphism (that is an onto homomorphism) $\beta : B \to C$ and any homomorphism $\gamma : A \to C$, there exists a homomorphism $\alpha : A \to B$ such that $\beta \alpha = \gamma$.

Projective algebras



Projective algebras

• In varieties of algebras the projective algebras coincides with retracts of free algebras.

• An algebra A is *a retract* of an algebra B if there exist homomorphisms $\alpha : A \to B$ and $\beta : B \to A$ such that $\beta \alpha = Id_A$.

Theorem 5. *m*-generated MG-algebra A is projective if and only if A contains either an atom $a \in A$ such that $\Diamond a = a$ or an atom such that $\Diamond a$ is isomorphic to K_n , where $1 < n \le m+1$.

Definition. An algebra A is called **finitely presented** if A is finitely generated, with the generators $a_1, \ldots, a_m \in A$, and there exist a finite number of equations

 $\begin{aligned} P_1(\mathbf{x}_1,...,\mathbf{x}_m) &= Q_1(\mathbf{x}_1,...,\mathbf{x}_m) , \ldots, P_n(\mathbf{x}_1,...,\mathbf{x}_m) = Q_n(\mathbf{x}_1,\ldots,\mathbf{x}_m) \\ \text{holding in } A \text{ on the generators } a_1, \ldots, a_m \in A \text{ such that } if \text{ there exists an } m\text{-generated algebra } B, \text{ with } \\ \text{generators } b_1, \ldots, b_m \in B, \text{ such that the equations } \\ P_1(\mathbf{x}_1,...,\mathbf{x}_m) = Q_1(\mathbf{x}_1,...,\mathbf{x}_m) , \ldots, P_n(\mathbf{x}_1,...,\mathbf{x}_m) = Q_n(\mathbf{x}_1,\ldots,\mathbf{x}_m) \\ \text{hold in } B \text{ on the generators } b_1, \ldots, b_m \in B, \text{ then there } \\ \text{exists a homomorphism } h: A \rightarrow B \text{ sending } a_i \text{ to } b_i. \end{aligned}$

• Theorem 7. An MG-algebra **B** is finitely presented iff $\mathbf{B} \cong F_{\mathbf{MG}}(m) / [u)$, where [u) is a principal monadic filter generated by some element $\Box u \in F_{\mathbf{MG}}(m)$.

• Theorem 8. If A is m-generated finitely presented algebra, then $A \times B_2$, $A \times C_n$, $A \times D_n$ is projective algebra, where B_2 is two-element Boolean algebra, C_n is n-element chain MGalgebra and D_n is MG-algebra corresponding to MIPC-frame K_n , $1 < n \le m+1$. • Theorem 8. If A is m-generated finitely presented algebra, then $A \times B_2$, $A \times C_n$, $A \times D_n$ is projective algebra, where B_2 is two-element Boolean algebra, C_n is n-element chain MGalgebra and D_n is MG-algebra corresponding to MIPC-frame K_n , $1 < n \le m+1$.

 Theorem 9. Any m-generated subalgebra of mgenerated free MG-algebra F_{MG}(m) is projective.

