
Revisiting Amalgamation and Stong Amalgamation

Roberto Bruttomesso, Silvio Ghilardi, Silvio Ranise

UniMi Milano, FBK Trento

TOLO III - Tblisi July 26, 2012

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 1 / 41

Quantifier-free Interpolation

A first-order theory T has quantifier-free interpolation iff for every
quantifier free formulae φ, ψ such that ψ ∧ φ is T -unsatisfiable, there
exists a quantifier free formula θ such that:

(i) T ` ψ → θ;

(ii) θ ∧ φ is not T -satisfiable:

(iii) only variables occurring both in ψ and in φ occur in θ.1

Quantifier-free interpolants are commonly used in formal verification
during abstraction-refinement cycles (since [McMillan CAV 03], [McMillan
TACAS 04], ...).

1Warning: in these slides we use free variables and free constants
interchangeably.
Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 2 / 41

Reachability: an example

Let’s start explaining the story with a toy example.
Below we consider a program manipulating integer variables x = pc, x , y
(here pc is the program counter indicating the current location).
The code of the program is translated to a formula T (x , x ′) expressing the
relation between current x and next x ′ state variables.
There’s an error location we do not want to be reachable.

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 3 / 41

Reachability: an example

Concrete Program Transition Formula T (x , x ′)

1: y := x;
2: while (x ≥ 1) {
3: x := x - 1;
4: y := y - 1;
5: }
6: if (y ≥ 1 && x ≤ 0)
7: ERROR;

(pc = 0 ∧ pc ′ = 2 ∧ x ′ = x = y ′)
∨
(pc = 2 ∧ x ≥ 1 ∧ pc ′ = 2 ∧ x ′ =
x − 1 ∧ y ′ = y − 1)
∨
(pc = 2 ∧ y ≥ 1 ∧ x ≤ 0 ∧ pc ′ =
7 ∧ x ′ = x ∧ y ′ = y)

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 4 / 41

Bounded Model Checking

Let x (0), . . . , x (n) renamed copies of the x .
The error location is reachable in n steps (n fixed) iff the formula

pc(0) = 0 ∧ T (x (0), x (1)) ∧ · · · ∧ T (x (n), x (n)) ∧ pc(n) = E

(E := 7 is the error location) is satisfiable.
We need satisfiability of quantifier-free formulae modulo a theory to
discharge this2

SMT-solvers (Z3, Yices, MathSat, CVC, ...) are the dedicated tools.

2NB: our quantifier free formulae have variables, so satisfiablity of φ means
that there are a model of the theory and an assignment to the variables making
φ true.
Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 5 / 41

Combination results

Usually, many theories are involved together in these problems: e.g. linear
(real or integer) arithmetic + datastructure theories (arrays, lists, stacks,
etc.). These theories, taken separatedly, have quantifier-free fragments
decidable for satisfiability.

What does it happen if we join them? We need decidability transfer results
and modular combined satisfiability algorithms.

Classical Nelson-Oppen works gives an answer:

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 6 / 41

Combination results

Usually, many theories are involved together in these problems: e.g. linear
(real or integer) arithmetic + datastructure theories (arrays, lists, stacks,
etc.). These theories, taken separatedly, have quantifier-free fragments
decidable for satisfiability.

What does it happen if we join them? We need decidability transfer results
and modular combined satisfiability algorithms.

Classical Nelson-Oppen works gives an answer:

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 6 / 41

Combination results

Usually, many theories are involved together in these problems: e.g. linear
(real or integer) arithmetic + datastructure theories (arrays, lists, stacks,
etc.). These theories, taken separatedly, have quantifier-free fragments
decidable for satisfiability.

What does it happen if we join them? We need decidability transfer results
and modular combined satisfiability algorithms.

Classical Nelson-Oppen works gives an answer:

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 6 / 41

Combination results

Theorem (Nelson-Oppen 1979)

Let T1,T2 be first-order theories whose signatures are disjoint and whose
quantifier-free fragment is decidable for satisfiability. If T1,T2 are both
stably infinite, then T1 ∪ T2 still has decidable quantifier-free fragment.

A first order theory T is stably infinite iff every model of T embeds into
an infinite one. Without stable infiniteness, combined decidability can be
lost [G. et al, IJCAR 2006].

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 7 / 41

Combination results

Theorem (Nelson-Oppen 1979)

Let T1,T2 be first-order theories whose signatures are disjoint and whose
quantifier-free fragment is decidable for satisfiability. If T1,T2 are both
stably infinite, then T1 ∪ T2 still has decidable quantifier-free fragment.

A first order theory T is stably infinite iff every model of T embeds into
an infinite one. Without stable infiniteness, combined decidability can be
lost [G. et al, IJCAR 2006].

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 7 / 41

Unbounded case

If we want to attack full verification (without a bound of the number of
steps), we can proceed as follows.

Given, φ(x) and the transition T (x , x ′), define

Pre0(T , φ) := φ

Pren(T , φ) := ∃x ′ (T (x , x ′) ∧ Pren−1(T , φ)).

The formula Pren(T , φ) describes the set of states that can reach a state
satisfying φ in n-steps.

Since T is usually a disjunction of guarded assignments (i.e. of formulae
of the form ψ(x) ∧ x ′ = t(x) with quantifier-free ψ), it is easily checked
that Pre(T , φ) is quantifier-free, in case φ is.

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 8 / 41

Unbounded case

If we want to attack full verification (without a bound of the number of
steps), we can proceed as follows.

Given, φ(x) and the transition T (x , x ′), define

Pre0(T , φ) := φ

Pren(T , φ) := ∃x ′ (T (x , x ′) ∧ Pren−1(T , φ)).

The formula Pren(T , φ) describes the set of states that can reach a state
satisfying φ in n-steps.

Since T is usually a disjunction of guarded assignments (i.e. of formulae
of the form ψ(x) ∧ x ′ = t(x) with quantifier-free ψ), it is easily checked
that Pre(T , φ) is quantifier-free, in case φ is.

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 8 / 41

Unbounded case

If we want to attack full verification (without a bound of the number of
steps), we can proceed as follows.

Given, φ(x) and the transition T (x , x ′), define

Pre0(T , φ) := φ

Pren(T , φ) := ∃x ′ (T (x , x ′) ∧ Pren−1(T , φ)).

The formula Pren(T , φ) describes the set of states that can reach a state
satisfying φ in n-steps.

Since T is usually a disjunction of guarded assignments (i.e. of formulae
of the form ψ(x) ∧ x ′ = t(x) with quantifier-free ψ), it is easily checked
that Pre(T , φ) is quantifier-free, in case φ is.

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 8 / 41

Unbounded case

Thus, we let φ be pc = E (where E is the error location) and start
computing

Pre0(T , φ),Pre1(T , φ),Pre2(T , φ), . . .

untile either we find a formula Pre2(T , φ) which is consistent with pc = 0
(which means that the program has a bug because 0 is the initial
location), or until we stabilize, i.e. we get an n such that
Pren(T , φ) ∧

∧
m<n ¬Prem(T , φ) is unsatisfiable.

Since all proof obbligations are quantifier-free and in the practical cases
they involve stably infinite theories over disjoint signatures whose
quantifier-free fragments are decidable, the plan is viable and SMT solvers
can accomplish the task.

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 9 / 41

Unbounded case

Thus, we let φ be pc = E (where E is the error location) and start
computing

Pre0(T , φ),Pre1(T , φ),Pre2(T , φ), . . .

untile either we find a formula Pre2(T , φ) which is consistent with pc = 0
(which means that the program has a bug because 0 is the initial
location), or until we stabilize, i.e. we get an n such that
Pren(T , φ) ∧

∧
m<n ¬Prem(T , φ) is unsatisfiable.

Since all proof obbligations are quantifier-free and in the practical cases
they involve stably infinite theories over disjoint signatures whose
quantifier-free fragments are decidable, the plan is viable and SMT solvers
can accomplish the task.

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 9 / 41

Unbounded case

The key problem is divergence. In our toy example, the preimages
sequence gives

pc = 7,

pc = 2 ∧ y ≥ 1 ∧ x ≤ 0,

pc = 2 ∧ y ≥ 2 ∧ x = 1,

pc = 2 ∧ y ≥ 3 ∧ x = 2,

· · ·

The idea is to make an abstraction of reachable states and to use
interpolants to refine the abstraction.

We show what happens in our case.

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 10 / 41

Unbounded case

The key problem is divergence. In our toy example, the preimages
sequence gives

pc = 7,

pc = 2 ∧ y ≥ 1 ∧ x ≤ 0,

pc = 2 ∧ y ≥ 2 ∧ x = 1,

pc = 2 ∧ y ≥ 3 ∧ x = 2,

· · ·

The idea is to make an abstraction of reachable states and to use
interpolants to refine the abstraction.

We show what happens in our case.

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 10 / 41

Unbounded case

The key problem is divergence. In our toy example, the preimages
sequence gives

pc = 7,

pc = 2 ∧ y ≥ 1 ∧ x ≤ 0,

pc = 2 ∧ y ≥ 2 ∧ x = 1,

pc = 2 ∧ y ≥ 3 ∧ x = 2,

· · ·

The idea is to make an abstraction of reachable states and to use
interpolants to refine the abstraction.

We show what happens in our case.

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 10 / 41

Interpolation Example
Interpolants in software verification

Original (Concrete) Program Control Flow and Transitions

1: y := x;
2: while (x ≥ 1) {
3: x := x - 1;
4: y := y - 1;
5: }
6: if (y ≥ 1 && x ≤ 0)
7: ERROR;

0 2 7
T1 T3

T2

T1: > ∧
{

x ′ := x
y ′ := x

T2: x ≥ 1 ∧
{

x ′ := x − 1
y ′ := y − 1

T3: x ≤ 0 ∧ y ≥ 1 ∧
{

x ′ := x
y ′ := y

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 11 / 41

Interpolation Example
Interpolants in software verification

(Abstract) Program Unwinding Control Flow and Transitions

0 2 7
T1 T3

{ > } { > } { > }

{ > }

aatrue
aax1 = x0
aay1 = x0

{ y1 - x1 ≤ 0 }

aax1 ≤ 0
aay1 ≥ 1
aax2 = x1
aay2 = y1

{ ⊥ }

0 2 7
T1 T3

T2

T1: > ∧
{

x ′ := x
y ′ := x

T2: x ≥ 1 ∧
{

x ′ := x − 1
y ′ := y − 1

T3: x ≤ 0 ∧ y ≥ 1 ∧
{

x ′ := x
y ′ := y

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 12 / 41

Interpolation Example
Interpolants in software verification

(Abstract) Program Unwinding Control Flow and Transitions

0 2 7
T1 T3

{ > } { > } { > }

{ > }
aatrue
aax1 = x0
aay1 = x0

{ y1 - x1 ≤ 0 }

aax1 ≤ 0
aay1 ≥ 1
aax2 = x1
aay2 = y1

{ ⊥ }

0 2 7
T1 T3

T2

T1: > ∧
{

x ′ := x
y ′ := x

T2: x ≥ 1 ∧
{

x ′ := x − 1
y ′ := y − 1

T3: x ≤ 0 ∧ y ≥ 1 ∧
{

x ′ := x
y ′ := y

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 12 / 41

Interpolation Example
Interpolants in software verification

(Abstract) Program Unwinding Control Flow and Transitions

0 2 7
T1 T3

{ > } { > } { > }

{ > }
aatrue
aax1 = x0
aay1 = x0
{ y1 - x1 ≤ 0 }
aax1 ≤ 0
aay1 ≥ 1
aax2 = x1
aay2 = y1

{ ⊥ }

0 2 7
T1 T3

T2

T1: > ∧
{

x ′ := x
y ′ := x

T2: x ≥ 1 ∧
{

x ′ := x − 1
y ′ := y − 1

T3: x ≤ 0 ∧ y ≥ 1 ∧
{

x ′ := x
y ′ := y

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 12 / 41

Interpolation Example
Interpolants in software verification

(Abstract) Program Unwinding Control Flow and Transitions

0 2 7
T1 T3

{ > } { > } { > }

{ > }
aatrue
aax1 = x0
aay1 = x0
{ y1 - x1 ≤ 0 }
aax1 ≤ 0
aay1 ≥ 1
aax2 = x1
aay2 = y1
{ ⊥ }

0 2 7
T1 T3

T2

T1: > ∧
{

x ′ := x
y ′ := x

T2: x ≥ 1 ∧
{

x ′ := x − 1
y ′ := y − 1

T3: x ≤ 0 ∧ y ≥ 1 ∧
{

x ′ := x
y ′ := y

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 12 / 41

Interpolation Example
Interpolants in software verification

(Abstract) Program Unwinding Control Flow and Transitions

0 2 7
T1 T3

{ > } { ⊥ }{ y - x ≤ 0 }

{ > }
aatrue
aax1 = x0
aay1 = x0
{ y1 - x1 ≤ 0 }
aax1 ≤ 0
aay1 ≥ 1
aax2 = x1
aay2 = y1
{ ⊥ }

0 2 7
T1 T3

T2

T1: > ∧
{

x ′ := x
y ′ := x

T2: x ≥ 1 ∧
{

x ′ := x − 1
y ′ := y − 1

T3: x ≤ 0 ∧ y ≥ 1 ∧
{

x ′ := x
y ′ := y

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 12 / 41

Interpolation Example
Interpolants in software verification

(Abstract) Program Unwinding Control Flow and Transitions

0 2 7
T1 T3

{ > } { ⊥ }{ y - x ≤ 0 }

2

T2

7
T3

{ > } { > }

{ > }

aatrue
aax1 = x0
aay1 = x0

{ y1 - x1 ≤ 0 }

aax1 ≥ 1
aax2 = x1 - 1
aay2 = y1 - 1

{ y2 - x2 ≤ 0 }

aax2 ≤ 0
aay2 ≥ 1
aax3 = x2
aay3 = y2

{ ⊥ }

0 2 7
T1 T3

T2

T1: > ∧
{

x ′ := x
y ′ := x

T2: x ≥ 1 ∧
{

x ′ := x − 1
y ′ := y − 1

T3: x ≤ 0 ∧ y ≥ 1 ∧
{

x ′ := x
y ′ := y

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 13 / 41

Interpolation Example
Interpolants in software verification

(Abstract) Program Unwinding Control Flow and Transitions

0 2 7
T1 T3

{ > } { ⊥ }{ y - x ≤ 0 }

2

T2

7
T3

{ > } { > }

{ > }
aatrue
aax1 = x0
aay1 = x0

{ y1 - x1 ≤ 0 }

aax1 ≥ 1
aax2 = x1 - 1
aay2 = y1 - 1

{ y2 - x2 ≤ 0 }

aax2 ≤ 0
aay2 ≥ 1
aax3 = x2
aay3 = y2

{ ⊥ }

0 2 7
T1 T3

T2

T1: > ∧
{

x ′ := x
y ′ := x

T2: x ≥ 1 ∧
{

x ′ := x − 1
y ′ := y − 1

T3: x ≤ 0 ∧ y ≥ 1 ∧
{

x ′ := x
y ′ := y

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 13 / 41

Interpolation Example
Interpolants in software verification

(Abstract) Program Unwinding Control Flow and Transitions

0 2 7
T1 T3

{ > } { ⊥ }{ y - x ≤ 0 }

2

T2

7
T3

{ > } { > }

{ > }
aatrue
aax1 = x0
aay1 = x0
{ y1 - x1 ≤ 0 }
aax1 ≥ 1
aax2 = x1 - 1
aay2 = y1 - 1

{ y2 - x2 ≤ 0 }

aax2 ≤ 0
aay2 ≥ 1
aax3 = x2
aay3 = y2

{ ⊥ }

0 2 7
T1 T3

T2

T1: > ∧
{

x ′ := x
y ′ := x

T2: x ≥ 1 ∧
{

x ′ := x − 1
y ′ := y − 1

T3: x ≤ 0 ∧ y ≥ 1 ∧
{

x ′ := x
y ′ := y

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 13 / 41

Interpolation Example
Interpolants in software verification

(Abstract) Program Unwinding Control Flow and Transitions

0 2 7
T1 T3

{ > } { ⊥ }{ y - x ≤ 0 }

2

T2

7
T3

{ > } { > }

{ > }
aatrue
aax1 = x0
aay1 = x0
{ y1 - x1 ≤ 0 }
aax1 ≥ 1
aax2 = x1 - 1
aay2 = y1 - 1
{ y2 - x2 ≤ 0 }
aax2 ≤ 0
aay2 ≥ 1
aax3 = x2
aay3 = y2

{ ⊥ }

0 2 7
T1 T3

T2

T1: > ∧
{

x ′ := x
y ′ := x

T2: x ≥ 1 ∧
{

x ′ := x − 1
y ′ := y − 1

T3: x ≤ 0 ∧ y ≥ 1 ∧
{

x ′ := x
y ′ := y

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 13 / 41

Interpolation Example
Interpolants in software verification

(Abstract) Program Unwinding Control Flow and Transitions

0 2 7
T1 T3

{ > } { ⊥ }{ y - x ≤ 0 }

2

T2

7
T3

{ > } { > }

{ > }
aatrue
aax1 = x0
aay1 = x0
{ y1 - x1 ≤ 0 }
aax1 ≥ 1
aax2 = x1 - 1
aay2 = y1 - 1
{ y2 - x2 ≤ 0 }
aax2 ≤ 0
aay2 ≥ 1
aax3 = x2
aay3 = y2
{ ⊥ }

0 2 7
T1 T3

T2

T1: > ∧
{

x ′ := x
y ′ := x

T2: x ≥ 1 ∧
{

x ′ := x − 1
y ′ := y − 1

T3: x ≤ 0 ∧ y ≥ 1 ∧
{

x ′ := x
y ′ := y

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 13 / 41

Interpolation Example
Interpolants in software verification

(Abstract) Program Unwinding Control Flow and Transitions

0 2 7
T1 T3

{ > } { ⊥ }{ y - x ≤ 0 }

2

T2

7
T3

{ y - x ≤ 0 } { ⊥ }

{ > }
aatrue
aax1 = x0
aay1 = x0
{ y1 - x1 ≤ 0 }
aax1 ≥ 1
aax2 = x1 - 1
aay2 = y1 - 1
{ y2 - x2 ≤ 0 }
aax2 ≤ 0
aay2 ≥ 1
aax3 = x2
aay3 = y2
{ ⊥ }

0 2 7
T1 T3

T2

T1: > ∧
{

x ′ := x
y ′ := x

T2: x ≥ 1 ∧
{

x ′ := x − 1
y ′ := y − 1

T3: x ≤ 0 ∧ y ≥ 1 ∧
{

x ′ := x
y ′ := y

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 13 / 41

Interpolation Example
Interpolants in software verification

(Abstract) Program Unwinding Control Flow and Transitions

0 2 7
T1 T3

{ > } { ⊥ }{ y - x ≤ 0 }

2

T2

7
T3

{ y - x ≤ 0 } { ⊥ }

Covered
{ > }
aatrue
aax1 = x0
aay1 = x0
{ y1 - x1 ≤ 0 }
aax1 ≥ 1
aax2 = x1 - 1
aay2 = y1 - 1
{ y2 - x2 ≤ 0 }
aax2 ≤ 0
aay2 ≥ 1
aax3 = x2
aay3 = y2
{ ⊥ }

0 2 7
T1 T3

T2

T1: > ∧
{

x ′ := x
y ′ := x

T2: x ≥ 1 ∧
{

x ′ := x − 1
y ′ := y − 1

T3: x ≤ 0 ∧ y ≥ 1 ∧
{

x ′ := x
y ′ := y

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 13 / 41

Quantifier-free Interpolation

The success of the technology often depends on crucial heuristics guiding
interpolation algorithms towards the production of good quality
interpolants.

Many theories used in software verification have quantifier-free
interpolants:

linear real arithmetic (LA) [McMillan TACAS 04];

Presburger arithmetic (PA) [Brillout et al. IJCAR 10];

more generally, every theory having QE (but QE algorithms usually
are not efficient);

the theory (EUF) of equality with uninterpreted function symbols
[McMillan TACAS 04], [Fuchs et al. TACAS 09];

some combinations of the above like (LA)+(EUF) [McMillan TACAS
04].

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 14 / 41

Quantifier-free Interpolation

The success of the technology often depends on crucial heuristics guiding
interpolation algorithms towards the production of good quality
interpolants.
Many theories used in software verification have quantifier-free
interpolants:

linear real arithmetic (LA) [McMillan TACAS 04];

Presburger arithmetic (PA) [Brillout et al. IJCAR 10];

more generally, every theory having QE (but QE algorithms usually
are not efficient);

the theory (EUF) of equality with uninterpreted function symbols
[McMillan TACAS 04], [Fuchs et al. TACAS 09];

some combinations of the above like (LA)+(EUF) [McMillan TACAS
04].

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 14 / 41

Quantifier-free Interpolation

The success of the technology often depends on crucial heuristics guiding
interpolation algorithms towards the production of good quality
interpolants.
Many theories used in software verification have quantifier-free
interpolants:

linear real arithmetic (LA) [McMillan TACAS 04];

Presburger arithmetic (PA) [Brillout et al. IJCAR 10];

more generally, every theory having QE (but QE algorithms usually
are not efficient);

the theory (EUF) of equality with uninterpreted function symbols
[McMillan TACAS 04], [Fuchs et al. TACAS 09];

some combinations of the above like (LA)+(EUF) [McMillan TACAS
04].

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 14 / 41

Quantifier-free Interpolation

The success of the technology often depends on crucial heuristics guiding
interpolation algorithms towards the production of good quality
interpolants.
Many theories used in software verification have quantifier-free
interpolants:

linear real arithmetic (LA) [McMillan TACAS 04];

Presburger arithmetic (PA) [Brillout et al. IJCAR 10];

more generally, every theory having QE (but QE algorithms usually
are not efficient);

the theory (EUF) of equality with uninterpreted function symbols
[McMillan TACAS 04], [Fuchs et al. TACAS 09];

some combinations of the above like (LA)+(EUF) [McMillan TACAS
04].

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 14 / 41

Quantifier-free Interpolation

The success of the technology often depends on crucial heuristics guiding
interpolation algorithms towards the production of good quality
interpolants.
Many theories used in software verification have quantifier-free
interpolants:

linear real arithmetic (LA) [McMillan TACAS 04];

Presburger arithmetic (PA) [Brillout et al. IJCAR 10];

more generally, every theory having QE (but QE algorithms usually
are not efficient);

the theory (EUF) of equality with uninterpreted function symbols
[McMillan TACAS 04], [Fuchs et al. TACAS 09];

some combinations of the above like (LA)+(EUF) [McMillan TACAS
04].

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 14 / 41

Quantifier-free Interpolation

The success of the technology often depends on crucial heuristics guiding
interpolation algorithms towards the production of good quality
interpolants.
Many theories used in software verification have quantifier-free
interpolants:

linear real arithmetic (LA) [McMillan TACAS 04];

Presburger arithmetic (PA) [Brillout et al. IJCAR 10];

more generally, every theory having QE (but QE algorithms usually
are not efficient);

the theory (EUF) of equality with uninterpreted function symbols
[McMillan TACAS 04], [Fuchs et al. TACAS 09];

some combinations of the above like (LA)+(EUF) [McMillan TACAS
04].

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 14 / 41

Quantifier-free Interpolation

The success of the technology often depends on crucial heuristics guiding
interpolation algorithms towards the production of good quality
interpolants.
Many theories used in software verification have quantifier-free
interpolants:

linear real arithmetic (LA) [McMillan TACAS 04];

Presburger arithmetic (PA) [Brillout et al. IJCAR 10];

more generally, every theory having QE (but QE algorithms usually
are not efficient);

the theory (EUF) of equality with uninterpreted function symbols
[McMillan TACAS 04], [Fuchs et al. TACAS 09];

some combinations of the above like (LA)+(EUF) [McMillan TACAS
04].

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 14 / 41

The theory AX ext of arrays with extensionality

This is an important theory in verification:

we have three sorts INDEX, ELEM, ARRAY;

besides equality, we have function symbols

rd : ARRAY× INDEX −→ ELEM,

wr : ARRAY× INDEX× ELEM −→ ARRAY

as axioms, we have

∀y , i , e. rd(wr(y , i , e), i) = e (1)

∀y , i , j , e. i 6= j ⇒ rd(wr(y , i , e), j) = rd(y , j) (2)

∀x , y . x 6= y ⇒ (∃i . rd(x , i) 6= rd(y , i)) (3)

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 15 / 41

The theory AX ext of arrays with extensionality

This is an important theory in verification:

we have three sorts INDEX, ELEM, ARRAY;

besides equality, we have function symbols

rd : ARRAY× INDEX −→ ELEM,

wr : ARRAY× INDEX× ELEM −→ ARRAY

as axioms, we have

∀y , i , e. rd(wr(y , i , e), i) = e (1)

∀y , i , j , e. i 6= j ⇒ rd(wr(y , i , e), j) = rd(y , j) (2)

∀x , y . x 6= y ⇒ (∃i . rd(x , i) 6= rd(y , i)) (3)

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 15 / 41

The theory AX ext of arrays with extensionality

This is an important theory in verification:

we have three sorts INDEX, ELEM, ARRAY;

besides equality, we have function symbols

rd : ARRAY× INDEX −→ ELEM,

wr : ARRAY× INDEX× ELEM −→ ARRAY

as axioms, we have

∀y , i , e. rd(wr(y , i , e), i) = e (1)

∀y , i , j , e. i 6= j ⇒ rd(wr(y , i , e), j) = rd(y , j) (2)

∀x , y . x 6= y ⇒ (∃i . rd(x , i) 6= rd(y , i)) (3)

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 15 / 41

The theory AX ext of arrays with extensionality

Unfortunately, AX ext does not have interpolation, witness the following
well-known counterexample (due to Ranjit Jhala).

A := {a = wr(b, i , e)}
B := {rd(a, j1) 6= rd(b, j1), rd(a, j2) 6= rd(b, j2), j1 6= j2}

Take ψ, φ to be the conjunctions of the literals from A,B, respectively.
Then ψ ∧ φ is AX ext-unsatisfiable, but no quantifier-free interpolant exists
(notice that it should mention only a, b).

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 16 / 41

The theory AX ext of arrays with extensionality

Unfortunately, AX ext does not have interpolation, witness the following
well-known counterexample (due to Ranjit Jhala).

A := {a = wr(b, i , e)}
B := {rd(a, j1) 6= rd(b, j1), rd(a, j2) 6= rd(b, j2), j1 6= j2}

Take ψ, φ to be the conjunctions of the literals from A,B, respectively.
Then ψ ∧ φ is AX ext-unsatisfiable, but no quantifier-free interpolant exists
(notice that it should mention only a, b).

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 16 / 41

The theory AX ext of arrays with extensionality

Unfortunately, AX ext does not have interpolation, witness the following
well-known counterexample (due to Ranjit Jhala).

A := {a = wr(b, i , e)}
B := {rd(a, j1) 6= rd(b, j1), rd(a, j2) 6= rd(b, j2), j1 6= j2}

Take ψ, φ to be the conjunctions of the literals from A,B, respectively.
Then ψ ∧ φ is AX ext-unsatisfiable, but no quantifier-free interpolant exists
(notice that it should mention only a, b).

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 16 / 41

The theory AX diff of arrays with diff

Since AX ext does not have quantifier-free interpolants, we propose the
following variant, which we call AX diff. We add a further symbol in the
signature

diff : ARRAY× ARRAY −→ INDEX

We replace the extensionality axiom (3) by its skolemization

∀x , y . x 6= y ⇒ rd(x , diff(x , y)) 6= rd(y , diff(x , y))

Theorem (BGR RTA ’11)

The theory AX diff has quantifier-free interpolation.

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 17 / 41

The theory AX diff of arrays with diff

Since AX ext does not have quantifier-free interpolants, we propose the
following variant, which we call AX diff. We add a further symbol in the
signature

diff : ARRAY× ARRAY −→ INDEX

We replace the extensionality axiom (3) by its skolemization

∀x , y . x 6= y ⇒ rd(x , diff(x , y)) 6= rd(y , diff(x , y))

Theorem (BGR RTA ’11)

The theory AX diff has quantifier-free interpolation.

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 17 / 41

The theory AX diff of arrays with diff

Since AX ext does not have quantifier-free interpolants, we propose the
following variant, which we call AX diff. We add a further symbol in the
signature

diff : ARRAY× ARRAY −→ INDEX

We replace the extensionality axiom (3) by its skolemization

∀x , y . x 6= y ⇒ rd(x , diff(x , y)) 6= rd(y , diff(x , y))

Theorem (BGR RTA ’11)

The theory AX diff has quantifier-free interpolation.

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 17 / 41

Our main concern

We investigate when quantifier-free interpolation transfers to combined
theories (we assume signature disjointness).

There are combination results [Yorsh-Musuvathi CADE 05], but often
quantifier-free interpolation does not transfer to combined theories: for
instance, in (PA)+(EUF) interpolants require quantifiers [Brillout et al.
IJCAR 10].

We shall first take a semantic approach to clarify the situation.

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 18 / 41

Our main concern

We investigate when quantifier-free interpolation transfers to combined
theories (we assume signature disjointness).

There are combination results [Yorsh-Musuvathi CADE 05], but often
quantifier-free interpolation does not transfer to combined theories: for
instance, in (PA)+(EUF) interpolants require quantifiers [Brillout et al.
IJCAR 10].

We shall first take a semantic approach to clarify the situation.

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 18 / 41

Our main concern

We investigate when quantifier-free interpolation transfers to combined
theories (we assume signature disjointness).

There are combination results [Yorsh-Musuvathi CADE 05], but often
quantifier-free interpolation does not transfer to combined theories: for
instance, in (PA)+(EUF) interpolants require quantifiers [Brillout et al.
IJCAR 10].

We shall first take a semantic approach to clarify the situation.

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 18 / 41

Amalgamation

Definition

A theory T has the sub-amalgamation property iff whenever we are given
models M1 and M2 of T and a common substructure A of them, there
exists a further model M of T endowed with embeddings µ1 :M1 −→M
and µ2 :M2 −→M whose restrictions to |A| coincide.

M2 M--
µ2

A M1
--

?

?

?

?

µ1

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 19 / 41

Amalgamation

Theorem (Bacsich 75)

A (universal) theory T has the amalgamation property iff it has
quantifier-free interpolation.

This theorem is useful both for negative and for positive results. It gives
the essential information about existence of interpolants: once the
essential information is achieved, concrete algorithms can be designed.

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 20 / 41

Strong Amalgamation

We need a stronger form of amalgamation for combined interpolation:

Definition

A theory T has the strong sub-amalgamation property iff whenever we are
given models M1 and M2 of T and a common substructure A of them,
there exists a further model M of T endowed with embeddings
µ1 :M1 −→M and µ2 :M2 −→M whose restrictions to |A| coincide.
Moreover, the embeddings µ1, µ2 satisfy the following additional condition:
if for some m1,m2 we have µ1(m1) = µ2(m2), then there exists an
element a in |A| such that m1 = a = m2.

No identification is made in the amalgamated model!

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 21 / 41

Strong Amalgamation

Theorem

Let T be a theory admitting quantifier-free interpolation and Σ be a
signature disjoint from the signature of T containing at least a unary
predicate symbol. Then, T ∪ EUF (Σ) has quantifier-free interpolation iff
T has the strong sub-amalgamation property.

Here you are the relevant modularity result:

Theorem

Let T1 and T2 be two universal, stably infinite theories over disjoint
signatures Σ1 and Σ2. If both T1 and T2 have the strong
sub-amalgamation property, then so does T1 ∪ T2. In particular, T1 ∪ T2

admits quantifier-free interpolation.

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 22 / 41

Strong Amalgamation

Theorem

Let T be a theory admitting quantifier-free interpolation and Σ be a
signature disjoint from the signature of T containing at least a unary
predicate symbol. Then, T ∪ EUF (Σ) has quantifier-free interpolation iff
T has the strong sub-amalgamation property.

Here you are the relevant modularity result:

Theorem

Let T1 and T2 be two universal, stably infinite theories over disjoint
signatures Σ1 and Σ2. If both T1 and T2 have the strong
sub-amalgamation property, then so does T1 ∪ T2. In particular, T1 ∪ T2

admits quantifier-free interpolation.

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 22 / 41

Strong Amalgamation

Theorem

Let T be a theory admitting quantifier-free interpolation and Σ be a
signature disjoint from the signature of T containing at least a unary
predicate symbol. Then, T ∪ EUF (Σ) has quantifier-free interpolation iff
T has the strong sub-amalgamation property.

Here you are the relevant modularity result:

Theorem

Let T1 and T2 be two universal, stably infinite theories over disjoint
signatures Σ1 and Σ2. If both T1 and T2 have the strong
sub-amalgamation property, then so does T1 ∪ T2. In particular, T1 ∪ T2

admits quantifier-free interpolation.

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 22 / 41

Strong Amalgamation

In verification theory, people uses the following stronger property for a
theory T :

Definition

Let T be a theory in a signature Σ; we say that T has the general
quantifier-free interpolation property iff for every signature Σ′ (disjoint
from Σ) and for every ground Σ ∪ Σ′-formulæ φ, ψ such that φ ∧ ψ is
T -unsatisfiable, there is a ground formula θ such that:

(i) T ` ψ → θ;

(ii) θ ∧ φ is not T -satisfiable:

(iii) all predicate, constants and function symbols from Σ′

occurring in θ occur also in φ and in ψ.

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 23 / 41

Strong Amalgamation

In verification theory, people uses the following stronger property for a
theory T :

Definition

Let T be a theory in a signature Σ; we say that T has the general
quantifier-free interpolation property iff for every signature Σ′ (disjoint
from Σ) and for every ground Σ ∪ Σ′-formulæ φ, ψ such that φ ∧ ψ is
T -unsatisfiable, there is a ground formula θ such that:

(i) T ` ψ → θ;

(ii) θ ∧ φ is not T -satisfiable:

(iii) all predicate, constants and function symbols from Σ′

occurring in θ occur also in φ and in ψ.

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 23 / 41

Strong Amalgamation

This property implies quantifier-free interpolation property for the
combined theory T ∪ EUF (Σ′) and looks stronger than it. Nevertheless,
we have

Theorem

A theory T has the general quantifier free interpolation property iff it is
strongly sub-amalgamable.

Thus, the interpolation property commonly used in verification corresponds
to strong sub-amalgamability (not just to plain sub-amalgamability).

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 24 / 41

Strong Amalgamation

This property implies quantifier-free interpolation property for the
combined theory T ∪ EUF (Σ′) and looks stronger than it. Nevertheless,
we have

Theorem

A theory T has the general quantifier free interpolation property iff it is
strongly sub-amalgamable.

Thus, the interpolation property commonly used in verification corresponds
to strong sub-amalgamability (not just to plain sub-amalgamability).

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 24 / 41

Strong Amalgamation

This property implies quantifier-free interpolation property for the
combined theory T ∪ EUF (Σ′) and looks stronger than it. Nevertheless,
we have

Theorem

A theory T has the general quantifier free interpolation property iff it is
strongly sub-amalgamable.

Thus, the interpolation property commonly used in verification corresponds
to strong sub-amalgamability (not just to plain sub-amalgamability).

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 24 / 41

Strong Amalgamation Syntactically

For computational purposes, it is essential to have a syntactic
characterization of strong amalgamability in order to design combined
interpolation algorithms.

NOTATION. Given two finite tuples t ≡ t1, . . . , tn and v ≡ v1, . . . , vm of
terms,

the notation t ∩ v 6= ∅ stands for the formula
n∨

i=1

m∨
j=1

(ti = vj).

We use t1t2 to denote the juxtaposition of the two tuples t1 and t2 of
terms. So, for example, t1t2 ∩ v 6= ∅ is equivalent to

(t1 ∩ v 6= ∅) ∨ (t2 ∩ v 6= ∅) .

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 25 / 41

Strong Amalgamation Syntactically

Definition

A theory T is equality interpolating iff it has the quantifier-free
interpolation property and satisfies the following condition:

for every quintuple x , y
1
, z1, y2

, z2 of tuples of variables and pair of
quantifier-free formulae δ1(x , z1, y1

) and δ2(x , z2, y2
) such that

δ1(x , z1, y1
) ∧ δ2(x , z2, y2

) `T y
1
∩ y

2
6= ∅ (4)

there exists a tuple v(x) of terms (called interpolant terms) such that

δ1(x , z1, y1
) ∧ δ2(x , z2, y2

) `T y
1
y
2
∩ v 6= ∅ . (5)

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 26 / 41

Strong Amalgamation Syntactically

As an example, consider IDL (= the theory of integers under zero,
successor, predecessor, ordering). We have

a1 6= a2 ∧ 3 ≤ a1 < 5 ∧ 3 ≤ a2 < 5 ∧ 3 ≤ b < 5 ` a1a2 ∩ b 6= ∅

and in fact for ground v = 3, 4

a1 6= a2 ∧ 3 ≤ a1 < 5 ∧ 3 ≤ a2 < 5 ∧ 3 ≤ b < 5 ` a1a2b ∩ v 6= ∅.

The following result is useful in order to find examples:

Theorem

A universal theory admitting quantifier elimination is equality interpolating.

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 27 / 41

Strong Amalgamation Syntactically

As an example, consider IDL (= the theory of integers under zero,
successor, predecessor, ordering). We have

a1 6= a2 ∧ 3 ≤ a1 < 5 ∧ 3 ≤ a2 < 5 ∧ 3 ≤ b < 5 ` a1a2 ∩ b 6= ∅

and in fact for ground v = 3, 4

a1 6= a2 ∧ 3 ≤ a1 < 5 ∧ 3 ≤ a2 < 5 ∧ 3 ≤ b < 5 ` a1a2b ∩ v 6= ∅.

The following result is useful in order to find examples:

Theorem

A universal theory admitting quantifier elimination is equality interpolating.

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 27 / 41

Strong Amalgamation Syntactically

The main result is now the following:

Theorem

A theory T has the strong amalgamation property iff it is equality
interpolating.

We are now in the position of making a large list of theories that can be
combined while keeping quantifier-free interpolation property (all these
theories are universal, stably infinite and strongly amalgamable/equality
interpolating).

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 28 / 41

Strong Amalgamation Syntactically

LA, IDL, UTVPI: show universal quantifier eliminating
axiomatization;

PA (but with integer division modulo n, each n): idem;

acyclic lists: idem;

EUF: (easy) ad hoc argument;

RDS (recursive data structures): by reduction to the previous case;

AX diff: (non trivial) ad hoc argument

. . .

For convex theories, our notion of equality interpolating theory coincides
with [YM] one, so all examples from there can be imported.

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 29 / 41

Strong Amalgamation Syntactically

LA, IDL, UTVPI: show universal quantifier eliminating
axiomatization;

PA (but with integer division modulo n, each n): idem;

acyclic lists: idem;

EUF: (easy) ad hoc argument;

RDS (recursive data structures): by reduction to the previous case;

AX diff: (non trivial) ad hoc argument

. . .

For convex theories, our notion of equality interpolating theory coincides
with [YM] one, so all examples from there can be imported.

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 29 / 41

Strong Amalgamation Syntactically

LA, IDL, UTVPI: show universal quantifier eliminating
axiomatization;

PA (but with integer division modulo n, each n): idem;

acyclic lists: idem;

EUF: (easy) ad hoc argument;

RDS (recursive data structures): by reduction to the previous case;

AX diff: (non trivial) ad hoc argument

. . .

For convex theories, our notion of equality interpolating theory coincides
with [YM] one, so all examples from there can be imported.

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 29 / 41

Strong Amalgamation Syntactically

LA, IDL, UTVPI: show universal quantifier eliminating
axiomatization;

PA (but with integer division modulo n, each n): idem;

acyclic lists: idem;

EUF: (easy) ad hoc argument;

RDS (recursive data structures): by reduction to the previous case;

AX diff: (non trivial) ad hoc argument

. . .

For convex theories, our notion of equality interpolating theory coincides
with [YM] one, so all examples from there can be imported.

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 29 / 41

Strong Amalgamation Syntactically

LA, IDL, UTVPI: show universal quantifier eliminating
axiomatization;

PA (but with integer division modulo n, each n): idem;

acyclic lists: idem;

EUF: (easy) ad hoc argument;

RDS (recursive data structures): by reduction to the previous case;

AX diff: (non trivial) ad hoc argument

. . .

For convex theories, our notion of equality interpolating theory coincides
with [YM] one, so all examples from there can be imported.

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 29 / 41

Strong Amalgamation Syntactically

LA, IDL, UTVPI: show universal quantifier eliminating
axiomatization;

PA (but with integer division modulo n, each n): idem;

acyclic lists: idem;

EUF: (easy) ad hoc argument;

RDS (recursive data structures): by reduction to the previous case;

AX diff: (non trivial) ad hoc argument

. . .

For convex theories, our notion of equality interpolating theory coincides
with [YM] one, so all examples from there can be imported.

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 29 / 41

Strong Amalgamation Syntactically

LA, IDL, UTVPI: show universal quantifier eliminating
axiomatization;

PA (but with integer division modulo n, each n): idem;

acyclic lists: idem;

EUF: (easy) ad hoc argument;

RDS (recursive data structures): by reduction to the previous case;

AX diff: (non trivial) ad hoc argument

. . .

For convex theories, our notion of equality interpolating theory coincides
with [YM] one, so all examples from there can be imported.

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 29 / 41

Strong Amalgamation Syntactically

LA, IDL, UTVPI: show universal quantifier eliminating
axiomatization;

PA (but with integer division modulo n, each n): idem;

acyclic lists: idem;

EUF: (easy) ad hoc argument;

RDS (recursive data structures): by reduction to the previous case;

AX diff: (non trivial) ad hoc argument

. . .

For convex theories, our notion of equality interpolating theory coincides
with [YM] one, so all examples from there can be imported.

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 29 / 41

Beth definability property

Relationship between equality interpolating property and suitable variants
of Beth definability property can be shown.

A primitive formula is obtained from a conjunction of literals by prefixing
to it a string of existential quantifiers.

A theory T has the Beth definability property for these formulae iff:

- for every tuple of variables x , for every further variable y and
for every primitive formula θ(x , y) such that
θ(x , y ′) ∧ θ(x , y ′′) `T y ′ = y ′′, there is a term v(x) such
that θ(x , y) `T y = v .

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 30 / 41

Beth definability property

Relationship between equality interpolating property and suitable variants
of Beth definability property can be shown.

A primitive formula is obtained from a conjunction of literals by prefixing
to it a string of existential quantifiers.

A theory T has the Beth definability property for these formulae iff:

- for every tuple of variables x , for every further variable y and
for every primitive formula θ(x , y) such that
θ(x , y ′) ∧ θ(x , y ′′) `T y ′ = y ′′, there is a term v(x) such
that θ(x , y) `T y = v .

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 30 / 41

Beth definability property

Relationship between equality interpolating property and suitable variants
of Beth definability property can be shown.

A primitive formula is obtained from a conjunction of literals by prefixing
to it a string of existential quantifiers.

A theory T has the Beth definability property for these formulae iff:

- for every tuple of variables x , for every further variable y and
for every primitive formula θ(x , y) such that
θ(x , y ′) ∧ θ(x , y ′′) `T y ′ = y ′′, there is a term v(x) such
that θ(x , y) `T y = v .

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 30 / 41

Beth definability property

Theorem

A convex amalgamating first order theory T has the above Beth
definability property iff it is equality interpolating.

A first order theory T is said to be convex iff for every conjunction of
literals δ, if

δ `T x1 = y1 ∨ · · · ∨ xn = yn

(n ≥ 1) then there exists i = 1, . . . , n such that

δ `T xi = yi .

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 31 / 41

Beth definability property

The above Beth definability property is equivalent to regularity of
monomorphisms for the category CH of models of a universal Horn theory
H in a functional language.3

This matches with old known results in universal algebra (see Tholen et al.
1982 and the literature quoted therein):

Theorem

Let CH have the amalgamation property; then CH has the strong
amalgamation property iff epis in CH are regular iff monos in CH are
regular.

3The language must have at least a constant function, because we
formulated the property using literals, not just atoms.
Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 32 / 41

Beth definability property

The above Beth definability property is equivalent to regularity of
monomorphisms for the category CH of models of a universal Horn theory
H in a functional language.3

This matches with old known results in universal algebra (see Tholen et al.
1982 and the literature quoted therein):

Theorem

Let CH have the amalgamation property; then CH has the strong
amalgamation property iff epis in CH are regular iff monos in CH are
regular.

3The language must have at least a constant function, because we
formulated the property using literals, not just atoms.
Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 32 / 41

Beth definability property

The above Beth definability property is equivalent to regularity of
monomorphisms for the category CH of models of a universal Horn theory
H in a functional language.3

This matches with old known results in universal algebra (see Tholen et al.
1982 and the literature quoted therein):

Theorem

Let CH have the amalgamation property; then CH has the strong
amalgamation property iff epis in CH are regular iff monos in CH are
regular.

3The language must have at least a constant function, because we
formulated the property using literals, not just atoms.
Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 32 / 41

Combined Interpolation Algorithm

We show here how to exploit equality interpolation in order to design a
combined interpolation algorithm. We shall keep our exposition at a high
and informal level.

We fix two stably infinite equality interpolating Σ1,Σ2-theories T1,T2

(Σ1 ∩ Σ2 = ∅) and we suppose we have for both of them modules for
deciding satisfiability of quantifier-free formulae, extracting interpolants
from refutations, computing interpolant terms, etc.
We also fix finite sets of quantifiers-free formulae A, B such that∧

A ∧
∧

B is not T1 ∪ T2-satisfiable.

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 33 / 41

Combined Interpolation Algorithm

We show here how to exploit equality interpolation in order to design a
combined interpolation algorithm. We shall keep our exposition at a high
and informal level.
We fix two stably infinite equality interpolating Σ1,Σ2-theories T1,T2

(Σ1 ∩ Σ2 = ∅) and we suppose we have for both of them modules for
deciding satisfiability of quantifier-free formulae, extracting interpolants
from refutations, computing interpolant terms, etc.

We also fix finite sets of quantifiers-free formulae A, B such that∧
A ∧

∧
B is not T1 ∪ T2-satisfiable.

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 33 / 41

Combined Interpolation Algorithm

We show here how to exploit equality interpolation in order to design a
combined interpolation algorithm. We shall keep our exposition at a high
and informal level.
We fix two stably infinite equality interpolating Σ1,Σ2-theories T1,T2

(Σ1 ∩ Σ2 = ∅) and we suppose we have for both of them modules for
deciding satisfiability of quantifier-free formulae, extracting interpolants
from refutations, computing interpolant terms, etc.
We also fix finite sets of quantifiers-free formulae A, B such that∧

A ∧
∧

B is not T1 ∪ T2-satisfiable.

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 33 / 41

Combined Interpolation Algorithm

Conventions, notations and free assumptions on A,B:

we replace variables with free constants;

we assume that all atoms occurring in it are pure, i.e. either Σ1- or
Σ2-atoms;

constants, literals, formulae, etc. are called transparent if they contain
either only free constants from A or only free constants from B;

we shall manipulate only ground formulae built up from pure and
transparent atoms;

constants, literals, formulae, etc. are called shared if they contain
only free constants occurring both in A and in B;

we call Ai (i = 1, 2) the set of Σi -literals from A (same for Bi).

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 34 / 41

Combined Interpolation Algorithm

The following operation can be freely performed. Take a pure and
transparent literal L (let it e.g. contain only A-symbols), make a case-split
and add L or ¬L to A (case-split interpolants can be combined).

Call A-relevant (resp. B-relevant) the atoms occurring in A (resp. in B)
plus equalities between transparent free constants. Because of
Nelson-Oppen results, A ∪ B is consistent if (i) Ai ∪ Bi (i = 1, 2) are both
Ti -consistent; (ii) all A-relevant and B-relevant atoms are decided; (iii)
non transparent equalities between free constants are decided as well.

So the problem is just how to decide non-transparent equalities between
free constants. These cannot be added explicitly to A and B.

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 35 / 41

Combined Interpolation Algorithm

The following operation can be freely performed. Take a pure and
transparent literal L (let it e.g. contain only A-symbols), make a case-split
and add L or ¬L to A (case-split interpolants can be combined).

Call A-relevant (resp. B-relevant) the atoms occurring in A (resp. in B)
plus equalities between transparent free constants. Because of
Nelson-Oppen results, A ∪ B is consistent if (i) Ai ∪ Bi (i = 1, 2) are both
Ti -consistent; (ii) all A-relevant and B-relevant atoms are decided; (iii)
non transparent equalities between free constants are decided as well.

So the problem is just how to decide non-transparent equalities between
free constants. These cannot be added explicitly to A and B.

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 35 / 41

Combined Interpolation Algorithm

The following operation can be freely performed. Take a pure and
transparent literal L (let it e.g. contain only A-symbols), make a case-split
and add L or ¬L to A (case-split interpolants can be combined).

Call A-relevant (resp. B-relevant) the atoms occurring in A (resp. in B)
plus equalities between transparent free constants. Because of
Nelson-Oppen results, A ∪ B is consistent if (i) Ai ∪ Bi (i = 1, 2) are both
Ti -consistent; (ii) all A-relevant and B-relevant atoms are decided; (iii)
non transparent equalities between free constants are decided as well.

So the problem is just how to decide non-transparent equalities between
free constants. These cannot be added explicitly to A and B.

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 35 / 41

Combined Interpolation Algorithm

Suppose that we decided all relevant literals and that we implicitly decided
all non transparent equalities negatively, i.e. we decided that a = b never
holds whenever the equality a = b is not transparent.

By the above, since A ∪ B is supposed not to be consistent, we must have
that Ai ∧ Bi ∪ (a ∩ b = ∅) is not Ti -consistent for some i = 1, 2 (we let
a = a1, . . . , an be from A and b = b1, . . . , bm be from B)

Thus we have that

Ai ∪ Bi `Ti
(a ∩ b 6= ∅)

(with Ai ∪ Bi alone Ti -consistent, otherwise we have our interpolant).

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 36 / 41

Combined Interpolation Algorithm

Suppose that we decided all relevant literals and that we implicitly decided
all non transparent equalities negatively, i.e. we decided that a = b never
holds whenever the equality a = b is not transparent.

By the above, since A ∪ B is supposed not to be consistent, we must have
that Ai ∧ Bi ∪ (a ∩ b = ∅) is not Ti -consistent for some i = 1, 2 (we let
a = a1, . . . , an be from A and b = b1, . . . , bm be from B)

Thus we have that

Ai ∪ Bi `Ti
(a ∩ b 6= ∅)

(with Ai ∪ Bi alone Ti -consistent, otherwise we have our interpolant).

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 36 / 41

Combined Interpolation Algorithm

Suppose that we decided all relevant literals and that we implicitly decided
all non transparent equalities negatively, i.e. we decided that a = b never
holds whenever the equality a = b is not transparent.

By the above, since A ∪ B is supposed not to be consistent, we must have
that Ai ∧ Bi ∪ (a ∩ b = ∅) is not Ti -consistent for some i = 1, 2 (we let
a = a1, . . . , an be from A and b = b1, . . . , bm be from B)

Thus we have that

Ai ∪ Bi `Ti
(a ∩ b 6= ∅)

(with Ai ∪ Bi alone Ti -consistent, otherwise we have our interpolant).

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 36 / 41

Combined Interpolation Algorithm

Since Ti is equality interpolating, there must exist shared Σi -ground terms
v ≡ v1, . . . , vp such that

Ai ∪ Bi `Ti
(a ∩ v 6= ∅) ∨ (b ∩ v 6= ∅).

Thus the union of Ai ∪ {a ∩ v = ∅} and of Bi ∪ {b ∩ v = ∅} is not
Ti -satisfiable and invoking the available interpolation algorithm for Ti , we
can compute a ground shared Σi -formula θ such that

A `Ti
θ ∨ a ∩ v 6= ∅ and θ ∧ B `Ti

b ∩ v 6= ∅.

By case-split, we have n ∗ p + m ∗ p alternatives in order to
non-deterministically update A,B. For the first n ∗ p alternatives, we add
some ai = vj (for 1 ≤ i ≤ n, 1 ≤ j ≤ p) to A. For the last m ∗ p
alternatives, we add θ to A and some {θ, bi = vj} to B (for 1 ≤ i ≤ m,
1 ≤ j ≤ p).

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 37 / 41

Combined Interpolation Algorithm

Since Ti is equality interpolating, there must exist shared Σi -ground terms
v ≡ v1, . . . , vp such that

Ai ∪ Bi `Ti
(a ∩ v 6= ∅) ∨ (b ∩ v 6= ∅).

Thus the union of Ai ∪ {a ∩ v = ∅} and of Bi ∪ {b ∩ v = ∅} is not
Ti -satisfiable and invoking the available interpolation algorithm for Ti , we
can compute a ground shared Σi -formula θ such that

A `Ti
θ ∨ a ∩ v 6= ∅ and θ ∧ B `Ti

b ∩ v 6= ∅.

By case-split, we have n ∗ p + m ∗ p alternatives in order to
non-deterministically update A,B. For the first n ∗ p alternatives, we add
some ai = vj (for 1 ≤ i ≤ n, 1 ≤ j ≤ p) to A. For the last m ∗ p
alternatives, we add θ to A and some {θ, bi = vj} to B (for 1 ≤ i ≤ m,
1 ≤ j ≤ p).

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 37 / 41

Combined Interpolation Algorithm

Since Ti is equality interpolating, there must exist shared Σi -ground terms
v ≡ v1, . . . , vp such that

Ai ∪ Bi `Ti
(a ∩ v 6= ∅) ∨ (b ∩ v 6= ∅).

Thus the union of Ai ∪ {a ∩ v = ∅} and of Bi ∪ {b ∩ v = ∅} is not
Ti -satisfiable and invoking the available interpolation algorithm for Ti , we
can compute a ground shared Σi -formula θ such that

A `Ti
θ ∨ a ∩ v 6= ∅ and θ ∧ B `Ti

b ∩ v 6= ∅.

By case-split, we have n ∗ p + m ∗ p alternatives in order to
non-deterministically update A,B. For the first n ∗ p alternatives, we add
some ai = vj (for 1 ≤ i ≤ n, 1 ≤ j ≤ p) to A. For the last m ∗ p
alternatives, we add θ to A and some {θ, bi = vj} to B (for 1 ≤ i ≤ m,
1 ≤ j ≤ p).
Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 37 / 41

Combined Interpolation Algorithm

The key observation is that in all alternative there is a non-shared constant
a ∈ A (or b ∈ B) that becomes ‘morally shared’, in the sense that the
updated A (resp. B) contains a = v (resp. b = v) for some shared v .
Morally shared constants are in fact shared for practical purposes, because
it can be shown that they can be eliminated (by replacement with shared
terms) from interpolants.

Thus, in the end, if we exhaustively apply case-split and the above
procedure making constants shared, we must result in a situation where
Ai ∪ Bi is Ti -inconsistent (for some i = 1, 2) and thus interpolants can be
computed.

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 38 / 41

Combined Interpolation Algorithm

The key observation is that in all alternative there is a non-shared constant
a ∈ A (or b ∈ B) that becomes ‘morally shared’, in the sense that the
updated A (resp. B) contains a = v (resp. b = v) for some shared v .
Morally shared constants are in fact shared for practical purposes, because
it can be shown that they can be eliminated (by replacement with shared
terms) from interpolants.

Thus, in the end, if we exhaustively apply case-split and the above
procedure making constants shared, we must result in a situation where
Ai ∪ Bi is Ti -inconsistent (for some i = 1, 2) and thus interpolants can be
computed.

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 38 / 41

Thanks for attention!

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 39 / 41

YM conditions

We say that a theory T satisfies condition YMc iff it has the quantifier
free interpolation property and for every pair y1, y2 of variables, for further
tuples x , z1, z2, for every pair of conjunctions of literals
δ1(x , z1, y1), δ2(x , z2, y2) such that

δ1(x , z1, y1) ∧ δ2(x , z2, y2) `T y1 = y2 (6)

there exists a term v(x) such that

δ1(x , z1, y1) ∧ δ2(x , z2, y2) `T y1 = v ∧ y2 = v . (7)

Condition YMc is equivalent to our condition of being equality
interpolating in case T is convex. In case T is not convex, YMc is
insufficient for combined interpolation: there is an example of a theory T
(the ‘golden cuff links theory’) that satisfies YMc but such that T ∪ EUF
does not have quantifier free interpolation.

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 40 / 41

YM conditions

We say that a theory T satisfies condition YMc iff it has the quantifier
free interpolation property and for every tuples x , z1, z2 of variables,
further tuples y

1
= y11, . . . , y1n, y

2
= y21, . . . , y2n of variables, and pairs

δ1(x , z1, y1
), δ2(x , z2, y2

) of conjunctions of literals,

if δ1(x , z1, y1
) ∧ δ2(x , z2, y2

) `T
n∨

i=1

(y1i = y2i) holds,

then there exists a tuple v(x) = v1, . . . , vn of terms such that

δ1(x , z1, y1
) ∧ δ2(x , z2, y2

) `T
n∨

i=1

(y1i = vi ∧ vi = y2i).

Condition YM is sufficient to guarantee combined quantifier free
interpolation but it is too strong in this sense (it is stronger than our
equality interpolating condition).

Bruttomesso, Ghilardi, Ranise (UniMi) Amalgamation & Strong Amalgamation TOLO III 41 / 41

