Canonical extension in first-order logic and Makkai's topos of types

Dion Coumans

Radboud University Nijmegen

Tbilisi, July 2012

イロト イロト イヨト イヨト 二日

1/51

Outline

1 Duality theory and canonical extension for propositional logic

- **2** Semantics for coherent first order logic (\land , \lor , \bot , \top , \exists):
 - Coherent hyperdoctrines
 - Coherent categories
- 3 Canonical extension in the categorical setting
- 4 Relation to Makkai's topos of types

Stone duality

Boolean algebras:structures $(B, \land, \lor, \neg, 0, 1)$.Boolean spaces:compact, totally disconnected, Hausdorff spaces.Boolean algebras \leftrightarrows Boolean spacesCl(X)Hausdorff spacesCl(X) \longleftrightarrow KB \mapsto $(PrFlt(B), \tau_B)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Stone duality

Boolean algebras:structures $(B, \land, \lor, \neg, 0, 1)$.Boolean spaces:compact, totally disconnected, Hausdorff spaces.Boolean algebras \leftrightarrows Boolean spacesCl(X) \leftarrow X

 $B \mapsto (PrFlt(B), \tau_B)$

Stone Representation Theorem: every Boolean algebra is embeddable in a powerset algebra.

Proof: for a Boolean algebra B,

$$B \cong Cl(PrFlt(B)) \hookrightarrow \mathcal{P}(PrFlt(B)).$$

Canonical extension: algebraic description of topological duality. Study $B \cong Cl(PrFlt(B)) \hookrightarrow \mathcal{P}(PrFlt(B)) = B^{\delta}$.

 $\mathbf{CABA} \qquad = \quad \mathsf{complete} \text{ and atomic Boolean algebras.}$

Boolean spaces = compact, totally disconnected Hausdorff spaces. **Canonical extension:** algebraic description of topological duality. Study $L \cong ClDwn(PrFlt(L)) \hookrightarrow Dwn(PrFlt(L)) = L^{\delta}$.

 \mathbf{DL}^+ = completely distributive algebraic lattices.

Priestley spaces = compact, totally order-disconnected Hausdorff spaces. $\mathbf{DL}^+ =$ completely distributive algebraic lattices.

Canonical extension is left adjoint to $\mathbf{DL}^+ \hookrightarrow \mathbf{DL}$.

Universal characterisation of canonical extension:

7/51

$$L \xrightarrow{e} L^{\delta}$$

$$\downarrow f$$

$$\downarrow f$$

$$K$$

where $L \in \mathbf{DL}$ and $K, L^{\delta} \in \mathbf{DL}^+$.

Let ${\mathbb T}$ be a theory in intuitionistic propositional logic.

Question: does $\mathbb T$ have the interpolation property, i.e.,

for all formulas $\phi(p,q)$ and $\psi(p,r)$ with $\phi(p,q) \vdash_{\mathbb{T}} \psi(p,r)$, there exists a formula $\theta(p)$ s.t.

 $\phi(p,q) \vdash_{\mathbb{T}} \theta(p) \quad \text{ and } \quad \theta(p) \vdash_{\mathbb{T}} \psi(p,r).$

Let $\ensuremath{\mathbb{T}}$ be a theory in intuitionistic propositional logic.

Question: does \mathbb{T} have the interpolation property, i.e.,

for all formulas $\phi(p,q)$ and $\psi(p,r)$ with $\phi(p,q) \vdash_{\mathbb{T}} \psi(p,r)$, there exists a formula $\theta(p)$ s.t.

 $\phi(p,q) \vdash_{\mathbb{T}} \theta(p) \quad \text{ and } \quad \theta(p) \vdash_{\mathbb{T}} \psi(p,r).$

Question: are monomorphisms stable under pushout in $\mathcal{V}_{\mathbb{T}}$?

Let ${\mathbb T}$ be a theory in intuitionic first order logic.

Question: does T have the interpolation property, i.e.,

for all sentences ϕ, ψ with $\phi \vdash_{\mathbb{T}} \psi$, there exists a sentence θ s.t.

1 $\phi \vdash_{\mathbb{T}} \theta$ and $\theta \vdash_{\mathbb{T}} \psi$;

2 every relation and function symbol which occurs in θ occurs in both ϕ and ψ .

Open problem for some first order intuitionistic theories, e.g.,

 $\mathbb{T} = \mathsf{IFOL} + (\phi \to \psi) \lor (\psi \to \phi).$

We start from	
Signature:	$\Sigma = (f_0, \dots, f_{k-1}, R_0, \dots, R_{l-1})$
Set of var's:	$X = \{x_0, x_1, \ldots\}$
Equality:	=
Connectives:	$\land,\lor,\top,\bot,\exists$
Derivability notion:	\vdash (given by axioms and rules)

Question:

What properties does the logic over Σ have?

We start from	
Signature:	$\Sigma = (f_0, \dots, f_{k-1}, R_0, \dots, R_{l-1})$
Set of var's:	$X = \{x_0, x_1, \ldots\}$
Equality:	=
Connectives:	$\land,\lor,\top,\bot,\exists$
Derivability notion:	\vdash (given by axioms and rules)

Question:

What properties does the logic over Σ have?

First observation:

For each sequence of variables $\vec{x} = \langle x_0, \dots, x_{n-1} \rangle$, $(Fm(\vec{x})/_{\vdash \cap \dashv}, \vdash)$ is a distributive lattice.

(□) (問) (目) (目) (日) (13/51)

. . .

Substitutions:

$$\begin{array}{cccc} x_0 & \mapsto & c \\ \phi(x_0) & \mapsto & \phi(c) \end{array}$$

. . .

Substitutions:

$$\begin{array}{cccc} x_0 & \mapsto & c \\ \phi(x_0) & \mapsto & \phi(c) \end{array}$$

. . .

Contexts and substitutions form a category B:

<ロト < 部 ト < 言 ト < 言 ト 言 の < で 16/51

Contexts and substitutions form a category B:

This category has **finite products**:

・ロ ・ ・ (日 ・ ・ 注 ・ く 注 ・ と う へ ()
17/51

Formulas and substitutions: functor $\mathbf{B}^{op} \to \mathbf{DL}$

Existential quantification: related to the inclusion map

19/51

 $\exists_{x_1}(\psi(x_0, x_1)) \vdash \phi(x_0)$

 $\psi(x_0, x_1) \qquad \vdash \quad \phi(x_0)$

Existential quantification: related to the inclusion map

20 / 51

A coherent hyperdoctrine is a functor $P: \mathbf{B^{op}} \to \mathbf{DL}$ s.t.

1 B is a category with finite limits;

2 for all $A \xrightarrow{\alpha} B \in \mathbf{B}$, $P(\alpha)$ has a left adjoint \exists_{α} with

■ Frobenius reciprocity, *i.e.*, for all $a \in P(A)$, $b \in P(B)$, $\exists_{\alpha}(a \land P(\alpha)(b)) = \exists_{\alpha}(a) \land b$

Beck-Chevalley condition, i.e., for every pullback square

$$\begin{array}{c} Q \xrightarrow{\alpha'} B \\ \beta' \downarrow & \downarrow \beta \\ A \xrightarrow{\alpha} C \end{array}$$

in B, $P(\beta) \circ \exists_{\alpha} = \exists_{\alpha'} \circ P(\beta').$

Examples of coherent hyperdoctrines:

Syntactic hyperdoctrine

 $\begin{array}{rcl} \mathbf{B} = \text{contexts and substitutions} \\ \mathcal{F} \colon & \mathbf{B}^{op} & \to & \mathbf{DL} \\ & \vec{x} & \mapsto & Fm(\vec{x})/_{\vdash \cap \dashv} \end{array}$

Powerset hyperdoctrine

 $\mathbf{B}=\mathbf{Set}$

$$\mathcal{P} \colon \begin{array}{ccc} \mathbf{B}^{op} & \to & \mathbf{DL} \\ & A & \mapsto & \mathcal{P}(A) \\ & A \xrightarrow{f} B & \mapsto & \mathcal{P}(B) \xrightarrow{f^{-1}} \mathcal{P}(A). \end{array}$$

A coherent hyperdoctrine is a functor $P: \mathbf{B}^{op} \to \mathbf{DL}$ s.t.

- **1 B** has finite limits;
- 2 for all $A \xrightarrow{\alpha} B$ in **B**, $P(\alpha)$ has a left adjoint satisfying Frobenius and Beck-Chevalley.

イロト 不得 トイヨト イヨト ヨー ろくつ

A coherent hyperdoctrine is a functor $P: \mathbf{B}^{op} \to \mathbf{DL}$ s.t.

- B has finite limits;
- 2 for all $A \xrightarrow{\alpha} B$ in **B**, $P(\alpha)$ has a left adjoint satisfying Frobenius and Beck-Chevalley.
- A coherent category is a category C satisfying
 - 1 C has finite limits;
 - 2 C has stable finite unions;
 - **3** C has stable images.

A coherent hyperdoctrine is a functor $P: \mathbf{B}^{op} \to \mathbf{DL}$ s.t.

- 1 B has finite limits;
- 2 for all $A \xrightarrow{\alpha} B$ in **B**, $P(\alpha)$ has a left adjoint satisfying Frobenius and Beck-Chevalley.
- A coherent category is a category C satisfying
 - 1 C has finite limits;
 - 2 C has stable finite unions;
 - **3** C has stable images.

Remark: for a coherent category C, $Sub_{\mathbf{C}} \colon \mathbf{C}^{op} \to \mathbf{DL}$ is a coherent hyperdoctrine.

Proposition: there is a 2-categorical adjunction

 $\mathcal{A} \colon \mathbf{CHyp} \leftrightarrows \mathbf{Coh} \colon \mathcal{S},$

where $\mathcal{A} \dashv \mathcal{S}$ and $\mathcal{A}(\mathcal{S}(\mathbf{C})) \simeq \mathbf{C}$.

Proposition: there is a 2-categorical adjunction

 $\mathcal{A} \colon \mathbf{CHyp} \leftrightarrows \mathbf{Coh} \colon \mathcal{S},$

イロト 不得 トイヨト イヨト ヨー ろくつ

27 / 51

where $\mathcal{A} \dashv \mathcal{S}$ and $\mathcal{A}(\mathcal{S}(\mathbf{C})) \simeq \mathbf{C}$.

For
$$\mathbf{C} \in \mathbf{Coh}$$
, $\mathcal{S}(\mathbf{C}) = \mathcal{S}_{\mathbf{C}} \colon \mathbf{C}^{op} \to \mathbf{DL}$
 $A \mapsto Sub_{\mathbf{C}}(A)$

Proposition: there is a 2-categorical adjunction

 $\mathcal{A}\colon\mathbf{CHyp}\leftrightarrows\mathbf{Coh}\colon\mathcal{S},$

where $\mathcal{A} \dashv \mathcal{S}$ and $\mathcal{A}(\mathcal{S}(\mathbf{C})) \simeq \mathbf{C}$.

For
$$\mathbf{C} \in \mathbf{Coh}$$
, $\mathcal{S}(\mathbf{C}) = \mathcal{S}_{\mathbf{C}} \colon \mathbf{C}^{op} \to \mathbf{DL}$
 $A \mapsto Sub_{\mathbf{C}}(A)$

For $P: \mathbf{B}^{op} \to \mathbf{DL}$, $\mathcal{A}(P)$ is the category with:

objects are pairs (A, a), where $A \in \mathbf{B}$, $a \in P(A)$;

a morphism $(A, a) \rightarrow (B, b)$ is an element $f \in P(A \times B)$ which is a functional relation $(A, a) \rightarrow (B, b)$.

イロト 不得 トイヨト イヨト ヨー ろんの

Canonical extension of coherent hyperdoctrines

Recall: canonical extension for DL's is a functor $\mathbf{DL} \xrightarrow{(..)^{\delta}} \mathbf{DL}^+$.

イロン 不通 とうせい マヨン しゅうろう

29 / 51

Definition

For a coh. hyperdoctrine $P: \mathbf{B}^{op} \to \mathbf{DL}$ we define: $P^{\delta} \colon \mathbf{B}^{op} \xrightarrow{P} \mathbf{DL} \xrightarrow{(..)^{\delta}} \mathbf{DL}$

Recall: canonical extension for DL's is a functor $\mathbf{DL} \xrightarrow{(.)^{\delta}} \mathbf{DL}^+$.

Definition

For a coh. hyperdoctrine $P: \mathbf{B}^{op} \to \mathbf{DL}$ we define: $P^{\delta}: \mathbf{B}^{op} \xrightarrow{P} \mathbf{DL} \xrightarrow{(.)^{\delta}} \mathbf{DL}.$

Proposition

For a coh. hyperdoctrine P, P^{δ} is again a coh. hyperdoctrine.

Proof: check that, for all $A \xrightarrow{\alpha} B$ in **B**, $P^{\delta}(\alpha)$ has a left adjoint satisfying BC and Frobenius.

We have:

• adjunction \mathcal{A} : **CHyp** \leftrightarrows **Coh**: \mathcal{S} , **C** $\simeq \mathcal{A}(\mathcal{S}_{\mathbf{C}})$;

イロト 不得 とくきとうきょう ほう

31/51

• for $P \in \mathbf{CHyp}$, $P^{\delta} \colon \mathbf{B}^{op} \xrightarrow{P} \mathbf{DL} \xrightarrow{(...)^{\delta}} \mathbf{DL}$.

Definition

For a coherent category ${\bf C}$ we define:

$$\mathbf{C}^{\delta} = \mathcal{A}(\mathcal{S}^{\delta}_{\mathbf{C}}).$$

We have:

• adjunction \mathcal{A} : **CHyp** \leftrightarrows **Coh**: \mathcal{S} , **C** $\simeq \mathcal{A}(\mathcal{S}_{\mathbf{C}})$;

32 / 51

• for $P \in \mathbf{CHyp}$, $P^{\delta} \colon \mathbf{B}^{op} \xrightarrow{P} \mathbf{DL} \xrightarrow{(.)^{\delta}} \mathbf{DL}$.

Definition

For a coherent category ${\bf C}$ we define:

$$\mathbf{C}^{\delta} = \mathcal{A}(\mathcal{S}^{\delta}_{\mathbf{C}}).$$

Proposition

For a distributive lattice L, $\mathcal{A}(\mathcal{S}^{\delta}_{\mathbf{L}}) \simeq \mathbf{L}^{\delta}$.

Properties of $\mathbf{C}^{\delta} = \mathcal{A}(\mathcal{S}^{\delta}_{\mathbf{C}})$:

- **1** subobject lattices are in **DL**⁺;
- 2 pullback morphisms are complete lattice homomorphisms.

イロト イヨト イヨト イヨト ヨー わえの

33 / 51

 Coh^+ = coherent categories satisfying (1) and (2).

Properties of $\mathbf{C}^{\delta} = \mathcal{A}(\mathcal{S}^{\delta}_{\mathbf{C}})$:

- **1** subobject lattices are in **DL**⁺;
- 2 pullback morphisms are complete lattice homomorphisms.
- Coh^+ = coherent categories satisfying (1) and (2).

Universal characterisation:

$$\mathbf{C} \xrightarrow{M_0} \mathbf{C}^{\delta} \\ \swarrow \\ M \qquad \bigvee_{\tilde{\mathbf{Y}}} \tilde{M} \\ \mathbf{E}$$

where $C \in Coh$, $E, C^{\delta} \in Coh^+$, M a coherent functor satisfying:

Properties of $\mathbf{C}^{\delta} = \mathcal{A}(\mathcal{S}^{\delta}_{\mathbf{C}})$:

- **1** subobject lattices are in **DL**⁺;
- 2 pullback morphisms are complete lattice homomorphisms.
- Coh^+ = coherent categories satisfying (1) and (2).

Universal characterisation:

$$\mathbf{C} \xrightarrow{M_0} \mathbf{C}^{\delta}$$

where $\mathbf{C} \in \mathbf{Coh}$, $\mathbf{E}, \mathbf{C}^{\delta} \in \mathbf{Coh}^+$, M a coherent functor satisfying: for all $A \xrightarrow{\alpha} B$ in \mathbf{C} , ρ (prime) filter in $\mathcal{S}_C(A)$, $\exists_{M(\alpha)}(\bigwedge\{M(U) \mid U \in \rho\}) \cong \bigwedge\{\exists_{M(\alpha)}(M(U)) \mid U \in \rho\}.$

35 / 51

Heyting categories provide semantics for first order logic.

Canonical extension interacts well with Heyting structure:

- for a coherent category C, C^{δ} is a Heyting category;
- for a Heyting category $\mathbf{C}, \mathbf{C} \hookrightarrow \mathbf{C}^{\delta}$ is a Heyting functor;
- for a morphism of Heyting categories $F \colon \mathbf{C} \to \mathbf{D}$,

$$F^{\delta} \colon \mathbf{C}^{\delta} \to \mathbf{D}^{\delta}$$

イロン 不通 とうせい マヨン しゅうろう

36/51

is again Heyting functor.

Topos of types was introduced by Makkai in 1979 as:

- 'a reasonable codification of the 'discrete' (non topological) syntactical structure of types of the theory',
- a tool to prove representation theorems,
- 'conceptual tool meant to enable us to formulate precisely certain natural intuitive questions'.

Some later work by: Magnan & Reyes and Butz.

Topos of types was introduced by Makkai in 1979 as:

- 'a reasonable codification of the 'discrete' (non topological) syntactical structure of types of the theory',
- a tool to prove representation theorems,
- 'conceptual tool meant to enable us to formulate precisely certain natural intuitive questions'.

Some later work by: Magnan & Reyes and Butz.

Alternative construction:

The functor $\mathcal{S}^{\delta}_{\mathbf{C}} \colon \mathbf{C}^{op} \to \mathbf{DL}$ is an internal locale in $Sh(\mathbf{C}, J_{coh})$. Then $Sh(\mathcal{S}^{\delta}_{\mathbf{C}}) \simeq T(\mathbf{C}) =$ topos of types of \mathbf{C} .

Let \mathcal{L} be a coherent logic, $\mathfrak{A} = (A, \ldots)$ a model of \mathcal{L} . For $a \in A$, the **type** of a in \mathfrak{A} is given by:

$$t(a,\mathfrak{A}) := \{\phi(x) \,|\, \mathfrak{A} \vDash \phi[a]\}.$$

This is a prime filter in

$$Fm_{\mathcal{L}}(\langle x\rangle)/_{\vdash\cap\dashv}=Sub_{\mathbf{C}_{\mathcal{L}}}(x\,|\,\top)$$

(where $C_{\mathcal{L}} =$ syntactic category of \mathcal{L}).

Idea: study prime filters in subobject lattices.

Makkai defined, for a coherent category C,

 $\mathbf{T}(\mathbf{C}) = \mathbf{Sh}(\tau \mathbf{C}, \mathbf{J}_{\mathbf{p}}).$

The category $\tau \mathbf{C}$ consists of

Objects: pairs (A, ρ) where $A \in \mathbf{C}$ and ρ prime filter in $Sub_{\mathbf{C}}(A)$

Morphisms: local continuous maps

Topology J_p is the topology induced by the coherent topology on the category of filters of C.

Makkai defined, for a coherent category C,

 $\mathbf{T}(\mathbf{C}) = \mathbf{Sh}(\tau \mathbf{C}, \mathbf{J}_{\mathbf{p}}).$

The category $\tau \mathbf{C}$ consists of

Objects: pairs (A, ρ) where $A \in \mathbf{C}$ and ρ prime filter in $Sub_{\mathbf{C}}(A)$

Morphisms: local continuous maps

Topology J_p is the topology induced by the coherent topology on the category of filters of C.

Theorem: for a coherent category \mathbf{C} , $T(\mathbf{C}) \simeq Sh(\mathcal{S}^{\delta}_{\mathbf{C}})$.

Theorem: $T(\mathbf{C}) \simeq Sh(\mathcal{S}^{\delta}_{\mathbf{C}}).$

Proof:

■ $T(\mathbf{C}) = Sh(\tau \mathbf{C})$ $\tau \mathbf{C}$: pairs (A, ρ) with $A \in \mathbf{C}$ and ρ prime filter in $Sub_{\mathbf{C}}(A)$.

$$\begin{array}{l} \bullet \hspace{0.1cm} Sh(\mathcal{S}^{\delta}_{\mathbf{C}}) \simeq Sh(\mathbf{C} \ltimes \mathcal{S}^{\delta}_{\mathbf{C}}) \\ \mathbf{C} \ltimes \mathcal{S}^{\delta}_{\mathbf{C}}: \hspace{0.1cm} \text{pairs} \hspace{0.1cm} (A, u) \hspace{0.1cm} \text{with} \hspace{0.1cm} A \in \mathbf{C} \hspace{0.1cm} \text{and} \hspace{0.1cm} u \in \mathcal{S}^{\delta}_{\mathbf{C}}(A). \end{array}$$

We have:

$$T(\mathbf{C}) = Sh(\tau \mathbf{C}) \simeq Sh(\mathbf{D}) \simeq Sh(\mathbf{C} \ltimes \mathcal{S}^{\delta}_{\mathbf{C}}) \simeq Sh(\mathcal{S}^{\delta}_{\mathbf{C}}).$$

 $(\mathbf{D} = \text{subcategory of } \mathbf{C} \ltimes \mathcal{S}^{\delta}_{\mathbf{C}} \text{ of pairs } (A, x) \text{ with } x \in J^{\infty}(\mathcal{S}^{\delta}_{\mathbf{C}}(A))).$

Theorem: for a coherent functor $F: \mathbf{C} \to \mathbf{D}$,

- if F is conservative, then $T(F): T(\mathbf{D}) \to T(\mathbf{C})$ is a geometric surjection;
- if F is a morphism of Heyting categories, then $T(F): T(\mathbf{D}) \to T(\mathbf{C})$ is open.

Proof: use facts on

- canonical extension of lattice homomorphism
- correspondence between internal locale morphisms and geometric morphisms

For a distributive lattice L, prime filters of $L \iff$ lattice homomorphisms $L \rightarrow \mathbf{2}$ \leftrightarrow 'models of L'.

 $L^{\delta} = Dwn(Mod(L)).$

Categorical analogue:

 $Mod(\mathbf{C}) = \text{coherent functors } M : \mathbf{C} \to \mathbf{Set}.$ Study: $\mathbf{Set}^{Mod(\mathbf{C})}.$

We have to restrict to an appropriate subcategory \mathcal{K} of $Mod(\mathbf{C})$.

Question: How does $\mathbf{Set}^{\mathcal{K}}$ relate to $T(\mathbf{C}) = Sh(\mathcal{S}^{\delta}_{\mathbf{C}})$?

Question: How does $\mathbf{Set}^{\mathcal{K}}$ relate to $T(\mathbf{C}) = Sh(\mathcal{S}^{\delta}_{\mathbf{C}})$?

Evaluation functor $ev \colon \mathbf{C} \to \mathbf{Set}^{\mathcal{K}}$ $A \mapsto ev(A) \colon \mathcal{K} \to \mathbf{Set}$ $M \mapsto M(A)$

Gives a geometric morphism $\phi_{ev} \colon \mathbf{Set}^{\mathcal{K}} \to Sh(\mathbf{C}, J_{coh}).$

Question: How does $\mathbf{Set}^{\mathcal{K}}$ relate to $T(\mathbf{C}) = Sh(\mathcal{S}^{\delta}_{\mathbf{C}})$?

Evaluation functor $ev \colon \mathbf{C} \to \mathbf{Set}^{\mathcal{K}}$ $A \mapsto ev(A) \colon \mathcal{K} \to \mathbf{Set}$ $M \mapsto M(A)$

Gives a geometric morphism $\phi_{ev} \colon \mathbf{Set}^{\mathcal{K}} \to Sh(\mathbf{C}, J_{coh}).$

Theorem: the topos of types yields the hyper-connected localic factorisation of $\mathbf{Set}^{\mathcal{K}} \xrightarrow{\phi_{ev}} Sh(\mathbf{C}, J_{coh})$:

46/51

Theorem: the topos of types yields the hyper-connected localic factorisation of $\mathbf{Set}^{\mathcal{K}} \xrightarrow{\phi_{ev}} Sh(\mathbf{C}, J_{coh})$.

Description of the factorisation:

 $T(\mathbf{C}) = Sh(S_{\mathbf{C}}^{\delta})$

To prove: $S^{\delta}_{\mathbf{C}} \cong (\phi_{ev})_*(\Omega_{Set^{\mathcal{K}}})$ in $Sh(\mathbf{C}, J_{coh})$.

Hence, for $A \in \mathbf{C}$,

$$\begin{array}{lll} (\phi_{ev})_*(\Omega_{Set^{\mathcal{K}}})(A) &=& Hom_{\mathbf{Set^{\mathcal{K}}}}(ev(A),\Omega_{Set^{\mathcal{K}}}) \\ &=& Sub(ev(A)). \end{array}$$

Let $\sigma_A \colon S^{\delta}_{\mathbf{C}}(A) \to (\phi_{ev})_*(\Omega_{Set^{\mathcal{K}}})(A)$ be the unique map given by:

Hence, for $A \in \mathbf{C}$,

$$\begin{aligned} (\phi_{ev})_*(\Omega_{Set^{\mathcal{K}}})(A) &= Hom_{\mathbf{Set}^{\mathcal{K}}}(ev(A), \Omega_{Set^{\mathcal{K}}}) \\ &= Sub(ev(A)). \end{aligned}$$

Let $\sigma_A \colon S^{\delta}_{\mathbf{C}}(A) \to (\phi_{ev})_*(\Omega_{Set^{\mathcal{K}}})(A)$ be the unique map given by: $Sub_{\mathbf{C}}(A) \to Sub(ev(A))$ $U \mapsto ev(U).$

49 / 51

Future work

Study the following diagram (where $\mathcal{K} \subseteq Mod(\mathbf{C})$):

Apply the developed theory in the study of first order logics:

イロト 不得 トイヨト イヨト 二日

50 / 51

- study interpolation problems for first order logics,
 e.g. for IPL + (φ → ψ) ∨ (ψ → φ);
- study problems in model theory.

Properties of the class \mathcal{K}

The category $\mathcal{K} \hookrightarrow Mod(\mathbf{C})$ should satisfy:

1 for all $M: \mathbb{C} \to \mathbf{Set}$ in $\mathcal{K}, A \in \mathbb{C}$, ρ prime filter in $Sub_{\mathbb{C}}(A)$,

$$\exists_{M(\alpha)}(\bigwedge \{M(U) \,|\, U \in \rho\}) \cong \bigwedge \{\exists_{M(\alpha)}(M(U)) \,|\, U \in \rho\};$$

2 for all $A \in \mathbf{C}$, ρ prime filter in $Sub_{\mathbf{C}}(A)$, there exist $M \in \mathcal{K}$ and $a \in M(A)$ s.t.

$$\rho = t_A(a, M) = \{ U \in Sub_{\mathbf{C}}(A) \mid a \in M(U) \};$$

3 for all $A \in \mathbb{C}$, $M, N \in \mathcal{K}$, $a \in M(A)$, $b \in N(A)$, if

$$b \in \bigwedge \{ N(U) \, | \, U \in t_A(a, M) \}$$

then there exists a morphism $h: M \to N$ s.t. $b = h_A(a)$.