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Stone duality

Boolean algebras: structures (B,∧,∨,¬, 0, 1).

Boolean spaces: compact, totally disconnected, Hausdorff spaces.

Boolean algebras � Boolean spaces

Cl(X) ←[ X

B 7→ (PrF lt(B), τB)

Stone Representation Theorem: every Boolean algebra is
embeddable in a powerset algebra.

Proof: for a Boolean algebra B,

B ∼= Cl(PrF lt(B)) ↪→ P(PrF lt(B)).
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Stone duality and canonical extension

Canonical extension: algebraic description of topological duality.

Study B ∼= Cl(PrF lt(B)) ↪→ P(PrF lt(B)) = Bδ.

CABA

U

��

At //
Sets

P
oo

Boolean
algebras

PrF lt //

( )δ

OO

Boolean
spaces

Cl
oo

U

OO

CABA = complete and atomic Boolean algebras.

Boolean spaces = compact, totally disconnected
Hausdorff spaces.
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Canonical extension for distributive lattices

Canonical extension: algebraic description of topological duality.

Study L ∼= ClDwn(PrF lt(L)) ↪→ Dwn(PrF lt(L)) = Lδ.

DL+

U

��

J∞ //
posets

Dwn
oo

distributive
lattices

PrF lt //

( )δ

OO

Priestley
spaces

ClDwn
oo

U

OO

DL+ = completely distributive algebraic lattices.

Priestley spaces = compact, totally order-disconnected
Hausdorff spaces.
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Canonical extension of distributive lattices

DL+ = completely distributive algebraic lattices.

Canonical extension is left adjoint to DL+ ↪→ DL.

Universal characterisation of canonical extension:

L
e //

f   @
@@

@@
@@

@ Lδ

f̃
��
K

where L ∈ DL and K,Lδ ∈ DL+.
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Interpolation in propositional logic

Let T be a theory in intuitionistic propositional logic.

Question: does T have the interpolation property, i.e.,

for all formulas φ(p, q) and ψ(p, r) with φ(p, q) `T ψ(p, r),

there exists a formula θ(p) s.t.

φ(p, q) `T θ(p) and θ(p) `T ψ(p, r).

Question: are monomorphisms stable under pushout in VT?
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Interpolation in first-order logic

Let T be a theory in intuitionic first order logic.

Question: does T have the interpolation property, i.e.,

for all sentences φ, ψ with φ `T ψ, there exists a sentence θ s.t.

1 φ `T θ and θ `T ψ;

2 every relation and function symbol which occurs in θ
occurs in both φ and ψ.

Open problem for some first order intuitionistic theories, e.g.,

T = IFOL +(φ→ ψ) ∨ (ψ → φ).
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Algebraic semantics for coherent logic

We start from

Signature: Σ = (f0, . . . , fk−1, R0, . . . , Rl−1)

Set of var’s: X = {x0, x1, . . .}
Equality: =

Connectives: ∧,∨,>,⊥, ∃
Derivability notion: ` (given by axioms and rules)

Question:

What properties does the logic over Σ have?

First observation:

For each sequence of variables ~x = 〈x0, . . . , xn−1〉,
(Fm(~x)/`∩a, `) is a distributive lattice.
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Algebraic semantics for coherent logic
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�
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Algebraic semantics for coherent logic
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�

�

�
φ(c)

�

�

�

�
φ(x0)
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�

�
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Algebraic semantics for coherent logic

Contexts and substitutions form a category B:

Objects: contexts ~x

Morphism ~x→ ~y: m-tuple 〈t0, . . . , tm−1〉
s.t. m = length(~y) and FV (ti) ⊆ ~x

〈〉
〈c〉

,,

〈c, f(c)〉

66
〈x0〉

〈x0, f(x0)〉 ..

〈x0〉

��
〈x0, x1〉 . . .ll
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Morphism ~x→ ~y: m-tuple 〈t0, . . . , tm−1〉
s.t. m = length(~y) and FV (ti) ⊆ ~x

This category has finite products:

〈x0, x1〉 〈x0, x1, x2〉
〈x0, x1〉oo 〈x2〉 // 〈x0〉

〈. . .〉
〈t0, t1〉

jjTTTTTTTTTTTTTTTTTTT
〈s0〉

55jjjjjjjjjjjjjjjjjjj

〈t0, t1, s0〉
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Algebraic semantics for coherent logic

Formulas and substitutions: functor Bop → DL

~x 7→ Fm(~x)

~x
〈t0,...,tm−1〉−−−−−−−→ ~y 7→ Fm(~y) → Fm(~x)

φ(~y) 7→ φ[~t/~y]

'

&

$

%
φ(c, f(c))

'

&

$

%
φ(x0, f(x0))

rr

'

&

$

%
φ(x0, x1)

rr

dd

〈〉
〈c〉

,,

〈c, f(c)〉

77
〈x0〉

〈x0, f(x0)〉 -- 〈x0, x1〉 . . .
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Algebraic semantics for coherent logic

Existential quantification: related to the inclusion map

�

�

�

�
φ(x0)

i
&&

�

�

�

�
ψ(x0, x1)

∃x1

ff

〈x0〉 〈x0, x1〉
〈x0〉oo

∃x1(ψ(x0, x1)) ` φ(x0)

ψ(x0, x1) ` φ(x0)
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Algebraic semantics for coherent logic

A coherent hyperdoctrine is a functor P : Bop → DL s.t.

1 B is a category with finite limits;

2 for all A
α−→ B ∈ B, P (α) has a left adjoint ∃α with

Frobenius reciprocity, i.e., for all a ∈ P (A), b ∈ P (B),

∃α(a ∧ P (α)(b)) = ∃α(a) ∧ b

Beck-Chevalley condition, i.e., for every pullback square

Q
α′
//

β′

��

B

β

��
A α

// C

in B, P (β) ◦ ∃α = ∃α′ ◦ P (β′).
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Algebraic semantics for coherent logic

Examples of coherent hyperdoctrines:

Syntactic hyperdoctrine

B = contexts and substitutions

F : Bop → DL
~x 7→ Fm(~x)/`∩a

Powerset hyperdoctrine

B = Set

P : Bop → DL

A 7→ P(A)

A
f−→ B 7→ P(B)

f−1

−−→ P(A).
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Coherent hyperdoctrines and coherent categories

A coherent hyperdoctrine is a functor P : Bop → DL s.t.

1 B has finite limits;

2 for all A
α−→ B in B, P (α) has a left adjoint satisfying

Frobenius and Beck-Chevalley.

A coherent category is a category C satisfying

1 C has finite limits;

2 C has stable finite unions;

3 C has stable images.

Remark: for a coherent category C, SubC : Cop → DL is a
coherent hyperdoctrine.
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Coherent hyperdoctrines and coherent categories

Proposition: there is a 2-categorical adjunction

A : CHyp � Coh : S,

where A a S and A(S(C)) ' C.

For C ∈ Coh, S(C) = SC : Cop → DL
A 7→ SubC(A)

For P : Bop → DL, A(P ) is the category with:

objects are pairs (A, a), where A ∈ B, a ∈ P (A);

a morphism (A, a)→ (B, b) is an element f ∈ P (A×B)
which is a functional relation (A, a)→ (B, b).

26 / 51



Coherent hyperdoctrines and coherent categories

Proposition: there is a 2-categorical adjunction

A : CHyp � Coh : S,

where A a S and A(S(C)) ' C.

For C ∈ Coh, S(C) = SC : Cop → DL
A 7→ SubC(A)

For P : Bop → DL, A(P ) is the category with:

objects are pairs (A, a), where A ∈ B, a ∈ P (A);

a morphism (A, a)→ (B, b) is an element f ∈ P (A×B)
which is a functional relation (A, a)→ (B, b).

27 / 51



Coherent hyperdoctrines and coherent categories

Proposition: there is a 2-categorical adjunction

A : CHyp � Coh : S,

where A a S and A(S(C)) ' C.

For C ∈ Coh, S(C) = SC : Cop → DL
A 7→ SubC(A)

For P : Bop → DL, A(P ) is the category with:

objects are pairs (A, a), where A ∈ B, a ∈ P (A);

a morphism (A, a)→ (B, b) is an element f ∈ P (A×B)
which is a functional relation (A, a)→ (B, b).

28 / 51



Canonical extension of coherent hyperdoctrines

Recall: canonical extension for DL’s is a functor DL
( )δ−−→ DL+.

Definition

For a coh. hyperdoctrine P : Bop → DL we define:

P δ : Bop P−→ DL
( )δ−−→ DL.

Proposition

For a coh. hyperdoctrine P , P δ is again a coh. hyperdoctrine.

Proof: check that, for all A
α−→ B in B, P δ(α) has a left adjoint

satisfying BC and Frobenius.
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Canonical extension of coherent categories

We have:

adjunction A : CHyp � Coh : S, C ' A(SC);

for P ∈ CHyp, P δ : Bop P−→ DL
( )δ−−→ DL.

Definition
For a coherent category C we define:

Cδ = A(SδC).

Proposition
For a distributive lattice L, A(SδL) ' Lδ.
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Canonical extension of coherent categories

Properties of Cδ = A(SδC):

1 subobject lattices are in DL+;

2 pullback morphisms are complete lattice homomorphisms.

Coh+ = coherent categories satisfying (1) and (2).

Universal characterisation: C
M0 //

M   A
AA

AA
AA

A Cδ

M̃
��
E

where C ∈ Coh, E,Cδ ∈ Coh+, M a coherent functor satisfying:

for all A
α−→ B in C, ρ (prime) filter in SC(A),

∃M(α)(
∧
{M(U) |U ∈ ρ}) ∼=

∧
{∃M(α)(M(U)) |U ∈ ρ}.
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Canonical extension of Heyting categories

Heyting categories provide semantics for first order logic.

Canonical extension interacts well with Heyting structure:

for a coherent category C, Cδ is a Heyting category;

for a Heyting category C, C ↪→ Cδ is a Heyting functor;

for a morphism of Heyting categories F : C→ D,

F δ : Cδ → Dδ

is again Heyting functor.
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Topos of types

Topos of types was introduced by Makkai in 1979 as:

‘a reasonable codification of the ‘discrete’ (non topological)
syntactical structure of types of the theory’,

a tool to prove representation theorems,

‘conceptual tool meant to enable us to formulate precisely
certain natural intuitive questions’.

Some later work by: Magnan & Reyes and Butz.

Alternative construction:

The functor SδC : Cop → DL is an internal locale in Sh(C, Jcoh).

Then Sh(SδC) ' T (C) = topos of types of C.
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Topos of types

Let L be a coherent logic, A = (A, . . .) a model of L.

For a ∈ A, the type of a in A is given by:

t(a,A) := {φ(x) |A � φ[a]}.

This is a prime filter in

FmL(〈x〉)/`∩a = SubCL(x | >)

(where CL = syntactic category of L).

Idea: study prime filters in subobject lattices.
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Topos of types

Makkai defined, for a coherent category C,

T(C) = Sh(τC,Jp).

The category τC consists of

Objects: pairs (A, ρ) where A ∈ C and ρ prime filter in SubC(A)

Morphisms: local continuous maps

Topology Jp is the topology induced by the coherent topology on
the category of filters of C.

Theorem: for a coherent category C, T (C) ' Sh(SδC).
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Topos of types

Theorem: T (C) ' Sh(SδC).

Proof:

T (C) = Sh(τC)

τC: pairs (A, ρ) with A ∈ C and ρ prime filter in SubC(A).

Sh(SδC) ' Sh(CnSδC)

Cn SδC: pairs (A, u) with A ∈ C and u ∈ SδC(A).

We have:

T (C) = Sh(τC) ' Sh(D) ' Sh(Cn SδC) ' Sh(SδC).

(D = subcategory of CnSδC of pairs (A, x) with x ∈ J∞(SδC(A))).
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Topos of types and morphisms

Theorem: for a coherent functor F : C→ D,

if F is conservative, then T (F ) : T (D)→ T (C) is a
geometric surjection;

if F is a morphism of Heyting categories, then
T (F ) : T (D)→ T (C) is open.

Proof: use facts on

canonical extension of lattice homomorphism

correspondence between internal locale morphisms and
geometric morphisms
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Topos of types and the class of models

For a distributive lattice L,

prime filters of L ↔ lattice homomorphisms L→ 2
↔ ‘models of L’.

Lδ = Dwn(Mod(L)).

Categorical analogue:

Mod(C) = coherent functors M : C→ Set.

Study: SetMod(C).

We have to restrict to an appropriate subcategory K of Mod(C).

Question: How does SetK relate to T (C) = Sh(SδC)?
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Topos of types and the class of models

Question: How does SetK relate to T (C) = Sh(SδC)?

Evaluation functor ev : C → SetK

A 7→ ev(A) : K → Set
M 7→ M(A)

Gives a geometric morphism φev : SetK → Sh(C, Jcoh).

Theorem: the topos of types yields the hyper-connected localic

factorisation of SetK
φev−−→ Sh(C, Jcoh):

T (C)

����
SetK φev

// //

88 88rrrrrrrrrr
Sh(C, Jcoh)
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Topos of types and the class of models

Theorem: the topos of types yields the hyper-connected localic

factorisation of SetK
φev−−→ Sh(C, Jcoh).

Description of the factorisation:

Sh((φev)∗(ΩSetK))

��
SetK φev

//

77nnnnnnnnnnnn
Sh(C, Jcoh)

T (C) = Sh(SδC)

To prove: SδC
∼= (φev)∗(ΩSetK) in Sh(C, Jcoh).
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Topos of types and the class of models

To prove: SδC
∼= (φev)∗(ΩSetK) in Sh(C, Jcoh)

Recall: C
y //

ev
%%JJJJJJJJJJJ Sh(C, Jcoh)

��
SetK

φev

UU

Hence, for A ∈ C,

(φev)∗(ΩSetK)(A) = HomSetK(ev(A),ΩSetK)
= Sub(ev(A)).

Let σA : SδC(A)→ (φev)∗(ΩSetK)(A) be the unique map given by:

SubC(A) → Sub(ev(A))
U 7→ ev(U).
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Future work

Study the following diagram (where K ⊆Mod(C)):

T (C)

����
SetK φev

// //

88 88rrrrrrrrrr
Sh(C, Jcoh)

Apply the developed theory in the study of first order logics:

study interpolation problems for first order logics,
e.g. for IPL + (φ→ ψ) ∨ (ψ → φ);

study problems in model theory.
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Properties of the class K

The category K ↪→Mod(C) should satisfy:

1 for all M : C→ Set in K, A ∈ C, ρ prime filter in SubC(A),

∃M(α)(
∧
{M(U) |U ∈ ρ}) ∼=

∧
{∃M(α)(M(U)) |U ∈ ρ};

2 for all A ∈ C, ρ prime filter in SubC(A), there exist M ∈ K
and a ∈M(A) s.t.

ρ = tA(a,M) = {U ∈ SubC(A) | a ∈M(U)};

3 for all A ∈ C, M,N ∈ K, a ∈M(A), b ∈ N(A), if

b ∈
∧
{N(U) |U ∈ tA(a,M)}

then there exists a morphism h : M → N s.t. b = hA(a).
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