Canonical extension in first-order logic and Makkai's topos of types

Dion Coumans

Radboud University Nijmegen
Tbilisi, July 2012

Outline

1 Duality theory and canonical extension for propositional logic

2 Semantics for coherent first order logic $(\wedge, \vee, \perp, \top, \exists)$:

- Coherent hyperdoctrines
- Coherent categories

3 Canonical extension in the categorical setting
4 Relation to Makkai's topos of types

Stone duality

Boolean algebras: structures $(B, \wedge, \vee, \neg, 0,1)$.
Boolean spaces: compact, totally disconnected, Hausdorff spaces.

Boolean algebras $\quad \leftrightarrows \quad$ Boolean spaces
$C l(X)$
B
\longleftarrow
\mapsto
$\left(\operatorname{PrFlt}(B), \tau_{B}\right)$

Stone duality

Boolean algebras: structures $(B, \wedge, \vee, \neg, 0,1)$.
Boolean spaces: compact, totally disconnected, Hausdorff spaces.

Boolean algebras $\quad \leftrightarrows \quad$ Boolean spaces

$$
\begin{array}{ccc}
C l(X) & \hookrightarrow & X \\
B & \mapsto & \left(\operatorname{PrFlt}(B), \tau_{B}\right)
\end{array}
$$

Stone Representation Theorem: every Boolean algebra is embeddable in a powerset algebra.

Proof: for a Boolean algebra B,

$$
B \cong C l(\operatorname{PrFlt}(B)) \hookrightarrow \mathcal{P}(\operatorname{PrFlt}(B))
$$

Stone duality and canonical extension

Canonical extension: algebraic description of topological duality. Study $B \cong C l(\operatorname{PrFlt}(B)) \hookrightarrow \mathcal{P}(\operatorname{PrFlt}(B))=B^{\delta}$.

CABA $\quad=$ complete and atomic Boolean algebras.
Boolean spaces $=$ compact, totally disconnected Hausdorff spaces.

Canonical extension for distributive lattices

Canonical extension: algebraic description of topological duality. Study $L \cong C l D w n(\operatorname{PrFlt}(L)) \hookrightarrow D w n(\operatorname{PrFlt}(L))=L^{\delta}$.

$\mathbf{D L}^{+} \quad=$ completely distributive algebraic lattices.
Priestley spaces $=$ compact, totally order-disconnected Hausdorff spaces.

Canonical extension of distributive lattices

$\mathrm{DL}^{+}=$completely distributive algebraic lattices.
Canonical extension is left adjoint to $\mathbf{D L}^{+} \hookrightarrow \mathbf{D L}$.

Universal characterisation of canonical extension:

where $L \in \mathbf{D L}$ and $K, L^{\delta} \in \mathbf{D L}^{+}$.

Interpolation in propositional logic

Let \mathbb{T} be a theory in intuitionistic propositional logic.
Question: does \mathbb{T} have the interpolation property, i.e.,
for all formulas $\phi(p, q)$ and $\psi(p, r)$ with $\phi(p, q) \vdash_{\mathbb{T}} \psi(p, r)$, there exists a formula $\theta(p)$ s.t.

$$
\phi(p, q) \vdash_{\mathbb{T}} \theta(p) \quad \text { and } \quad \theta(p) \vdash_{\mathbb{T}} \psi(p, r) .
$$

Interpolation in propositional logic

Let \mathbb{T} be a theory in intuitionistic propositional logic.
Question: does \mathbb{T} have the interpolation property, i.e.,
for all formulas $\phi(p, q)$ and $\psi(p, r)$ with $\phi(p, q) \vdash_{\mathbb{T}} \psi(p, r)$, there exists a formula $\theta(p)$ s.t.

$$
\phi(p, q) \vdash_{\mathbb{T}} \theta(p) \quad \text { and } \quad \theta(p) \vdash_{\mathbb{T}} \psi(p, r)
$$

Question: are monomorphisms stable under pushout in $\mathcal{V}_{\mathbb{T}}$?

Interpolation in first-order logic

Let \mathbb{T} be a theory in intuitionic first order logic.
Question: does \mathbb{T} have the interpolation property, i.e., for all sentences ϕ, ψ with $\phi \vdash_{\mathbb{T}} \psi$, there exists a sentence θ s.t.
$1 \phi \vdash_{\mathbb{T}} \theta$ and $\theta \vdash_{\mathbb{T}} \psi$;
2 every relation and function symbol which occurs in θ occurs in both ϕ and ψ.

Open problem for some first order intuitionistic theories, e.g.,

$$
\mathbb{T}=\mathrm{IFOL}+(\phi \rightarrow \psi) \vee(\psi \rightarrow \phi)
$$

Algebraic semantics for coherent logic

We start from
Signature:
Set of var's:
$X=\left\{x_{0}, x_{1}, \ldots\right\}$
Equality:
Connectives:
$\wedge, \vee, \top, \perp, \exists$
Derivability notion: \vdash (given by axioms and rules)

Question:

What properties does the logic over Σ have?

Algebraic semantics for coherent logic

We start from
Signature:
Set of var's:
$X=\left\{x_{0}, x_{1}, \ldots\right\}$
Equality:
Connectives:
$\Sigma=\left(f_{0}, \ldots, f_{k-1}, R_{0}, \ldots, R_{l-1}\right)$
$=$
$\wedge, \vee, \top, \perp, \exists$
Derivability notion: \vdash (given by axioms and rules)

Question:

What properties does the logic over Σ have?

First observation:

For each sequence of variables $\vec{x}=\left\langle x_{0}, \ldots, x_{n-1}\right\rangle$, $(F m(\vec{x}) / \vdash \cap \dashv, \vdash)$ is a distributive lattice.

Algebraic semantics for coherent logic

<>

$\left\langle x_{0}\right\rangle$

$\left\langle x_{0}, x_{1}\right\rangle$
...

Algebraic semantics for coherent logic

Substitutions:

$$
\begin{array}{ccc}
x_{0} & \mapsto & c \\
\phi\left(x_{0}\right) & \mapsto & \phi(c)
\end{array}
$$

Algebraic semantics for coherent logic

Substitutions:

$$
\begin{array}{ccc}
x_{0} & \mapsto & c \\
\phi\left(x_{0}\right) & \mapsto & \phi(c)
\end{array}
$$

Algebraic semantics for coherent logic

Contexts and substitutions form a category \mathbf{B} :
Objects: contexts \vec{x}
Morphism $\vec{x} \rightarrow \vec{y}: \quad m$-tuple $\left\langle t_{0}, \ldots, t_{m-1}\right\rangle$
s.t. $m=\operatorname{length}(\vec{y})$ and $F V\left(t_{i}\right) \subseteq \vec{x}$

Algebraic semantics for coherent logic

Contexts and substitutions form a category \mathbf{B} :
Objects: contexts \vec{x}
Morphism $\vec{x} \rightarrow \vec{y}: \quad m$-tuple $\left\langle t_{0}, \ldots, t_{m-1}\right\rangle$
s.t. $m=\operatorname{length}(\vec{y})$ and $F V\left(t_{i}\right) \subseteq \vec{x}$

This category has finite products:

Algebraic semantics for coherent logic

Formulas and substitutions: functor $\mathbf{B}^{o p} \rightarrow \mathbf{D L}$

$$
\begin{array}{ccccc}
\vec{x} & \mapsto & F m(\vec{x}) & & \\
\vec{x} \xrightarrow{\left\langle t_{0}, \ldots, t_{m-1}\right\rangle} \vec{y} & \mapsto & F m(\vec{y}) & \rightarrow & \operatorname{Fm}(\vec{x}) \\
& & \phi(\vec{y}) & \mapsto & \phi[\vec{t} / \vec{y}]
\end{array}
$$

Algebraic semantics for coherent logic

Existential quantification: related to the inclusion map

$$
\exists_{x_{1}}\left(\psi\left(x_{0}, x_{1}\right)\right) \quad \vdash \quad \phi\left(x_{0}\right)
$$

$$
\psi\left(x_{0}, x_{1}\right) \quad \vdash \quad \phi\left(x_{0}\right)
$$

Algebraic semantics for coherent logic

Existential quantification: related to the inclusion map

$$
\exists_{x_{1}}\left(\psi\left(x_{0}, x_{1}\right)\right) \quad \vdash_{x_{0}} \quad \phi\left(x_{0}\right)
$$

$$
\psi\left(x_{0}, x_{1}\right) \quad \vdash_{x_{0}, x_{1}} \quad i\left(\phi\left(x_{0}\right)\right)
$$

Algebraic semantics for coherent logic

A coherent hyperdoctrine is a functor $P: \mathbf{B}^{\mathbf{o p}} \rightarrow \mathbf{D L}$ s.t.
$1 B$ is a category with finite limits;
2 for all $A \xrightarrow{\alpha} B \in \mathbf{B}, P(\alpha)$ has a left adjoint \exists_{α} with

- Frobenius reciprocity, i.e., for all $a \in P(A), b \in P(B)$,

$$
\exists_{\alpha}(a \wedge P(\alpha)(b))=\exists_{\alpha}(a) \wedge b
$$

■ Beck-Chevalley condition, i.e., for every pullback square

in $\mathbf{B}, P(\beta) \circ \exists_{\alpha}=\exists_{\alpha^{\prime}} \circ P\left(\beta^{\prime}\right)$.

Algebraic semantics for coherent logic

Examples of coherent hyperdoctrines:

- Syntactic hyperdoctrine
$\mathbf{B}=$ contexts and substitutions

$$
\begin{aligned}
\mathcal{F}: \quad \mathbf{B}^{o p} & \rightarrow \mathbf{D L} \\
\vec{x} & \mapsto F m(\vec{x}) / \vdash \cap-1
\end{aligned}
$$

- Powerset hyperdoctrine

B $=$ Set

$$
\begin{aligned}
\mathcal{P}: \quad \mathbf{B}^{o p} & \rightarrow \mathbf{D L} \\
A & \mapsto \mathcal{P}(A) \\
A \xrightarrow{f} B & \mapsto \mathcal{P}(B) \xrightarrow{f^{-1}} \mathcal{P}(A) .
\end{aligned}
$$

Coherent hyperdoctrines and coherent categories

A coherent hyperdoctrine is a functor $P: \mathbf{B}^{o p} \rightarrow \mathbf{D L}$ s.t.
1 B has finite limits;
2 for all $A \xrightarrow{\alpha} B$ in $\mathbf{B}, P(\alpha)$ has a left adjoint satisfying Frobenius and Beck-Chevalley.

Coherent hyperdoctrines and coherent categories

A coherent hyperdoctrine is a functor $P: \mathbf{B}^{o p} \rightarrow \mathbf{D L}$ s.t.
1 B has finite limits;
2 for all $A \xrightarrow{\alpha} B$ in $\mathbf{B}, P(\alpha)$ has a left adjoint satisfying Frobenius and Beck-Chevalley.

A coherent category is a category \mathbf{C} satisfying
1 C has finite limits;
2. C has stable finite unions;

3 C has stable images.

Coherent hyperdoctrines and coherent categories

A coherent hyperdoctrine is a functor $P: \mathbf{B}^{o p} \rightarrow \mathbf{D L}$ s.t.
1 B has finite limits;
2 for all $A \xrightarrow{\alpha} B$ in $\mathbf{B}, P(\alpha)$ has a left adjoint satisfying Frobenius and Beck-Chevalley.

A coherent category is a category \mathbf{C} satisfying
1 C has finite limits;
$2 . \mathrm{C}$ has stable finite unions;
3 C has stable images.

Remark: for a coherent category $\mathbf{C}, S u b_{\mathbf{C}}: \mathbf{C}^{o p} \rightarrow \mathbf{D L}$ is a coherent hyperdoctrine.

Coherent hyperdoctrines and coherent categories

Proposition: there is a 2-categorical adjunction
$\mathcal{A}: \mathbf{C H y p} \leftrightarrows \mathbf{C o h}: \mathcal{S}$,
where $\mathcal{A} \dashv \mathcal{S}$ and $\mathcal{A}(\mathcal{S}(\mathbf{C})) \simeq \mathbf{C}$.

Coherent hyperdoctrines and coherent categories

Proposition: there is a 2-categorical adjunction

$$
\mathcal{A}: \mathbf{C H y p} \leftrightarrows \operatorname{Coh}: \mathcal{S}
$$

where $\mathcal{A} \dashv \mathcal{S}$ and $\mathcal{A}(\mathcal{S}(\mathbf{C})) \simeq \mathbf{C}$.

For $\mathbf{C} \in \mathbf{C o h}, \quad \mathcal{S}(\mathbf{C})=\mathcal{S}_{\mathbf{C}}: \mathbf{C}^{o p} \quad \rightarrow \quad \mathbf{D L}$

$$
A \mapsto \operatorname{Sub}_{\mathbf{C}}(A)
$$

Coherent hyperdoctrines and coherent categories

Proposition: there is a 2-categorical adjunction

$$
\mathcal{A}: \mathbf{C H y p} \leftrightarrows \operatorname{Coh}: \mathcal{S},
$$

where $\mathcal{A} \dashv \mathcal{S}$ and $\mathcal{A}(\mathcal{S}(\mathbf{C})) \simeq \mathbf{C}$.

For $\mathbf{C} \in \mathbf{C o h}, \quad \mathcal{S}(\mathbf{C})=\mathcal{S}_{\mathbf{C}}: \mathbf{C}^{o p} \quad \rightarrow \quad \mathbf{D L}$

$$
A \mapsto S u b_{\mathbf{C}}(A)
$$

For $P: \mathbf{B}^{o p} \rightarrow \mathbf{D L}, \mathcal{A}(P)$ is the category with:
objects are pairs (A, a), where $A \in \mathbf{B}, a \in P(A)$;
a morphism $(A, a) \rightarrow(B, b)$ is an element $f \in P(A \times B)$ which is a functional relation $(A, a) \rightarrow(B, b)$.

Canonical extension of coherent hyperdoctrines

Recall: canonical extension for DL's is a functor $\mathbf{D L} \xrightarrow{(-)^{\delta}} \mathbf{D L}^{+}$.

Definition

For a coh. hyperdoctrine $P: \mathbf{B}^{o p} \rightarrow \mathbf{D L}$ we define:

$$
P^{\delta}: \mathbf{B}^{o p} \xrightarrow{P} \mathbf{D L} \xrightarrow{(-)^{\delta}} \mathbf{D L} .
$$

Canonical extension of coherent hyperdoctrines

Recall: canonical extension for DL's is a functor $\mathbf{D L} \xrightarrow{(-)^{\delta}} \mathbf{D L}^{+}$.

Definition

For a coh. hyperdoctrine $P: \mathbf{B}^{o p} \rightarrow \mathbf{D L}$ we define:

$$
P^{\delta}: \mathbf{B}^{o p} \xrightarrow{P} \mathbf{D L} \xrightarrow{(-)^{\delta}} \mathbf{D L} .
$$

Proposition

For a coh. hyperdoctrine P, P^{δ} is again a coh. hyperdoctrine.
Proof: check that, for all $A \xrightarrow{\alpha} B$ in $\mathbf{B}, P^{\delta}(\alpha)$ has a left adjoint satisfying $B C$ and Frobenius.

Canonical extension of coherent categories

We have:
■ adjunction $\mathcal{A}: \mathbf{C H y p} \leftrightarrows \mathbf{C o h}: \mathcal{S}, \mathbf{C} \simeq \mathcal{A}\left(\mathcal{S}_{\mathbf{C}}\right)$;
■ for $P \in \mathbf{C H y p}, P^{\delta}: \mathbf{B}^{o p} \xrightarrow{P} \mathbf{D L} \xrightarrow{(-)^{\delta}} \mathbf{D L}$.

Definition

For a coherent category \mathbf{C} we define:

$$
\mathbf{C}^{\delta}=\mathcal{A}\left(\mathcal{S}_{\mathbf{C}}^{\delta}\right)
$$

Canonical extension of coherent categories

We have:
■ adjunction $\mathcal{A}: \mathbf{C H y p} \leftrightarrows \mathbf{C o h}: \mathcal{S}, \mathbf{C} \simeq \mathcal{A}\left(\mathcal{S}_{\mathbf{C}}\right)$;
■ for $P \in \mathbf{C H y p}, P^{\delta}: \mathbf{B}^{o p} \xrightarrow{P} \mathbf{D L} \xrightarrow{(-)^{\delta}} \mathbf{D L}$.

Definition

For a coherent category \mathbf{C} we define:

$$
\mathbf{C}^{\delta}=\mathcal{A}\left(\mathcal{S}_{\mathbf{C}}^{\delta}\right)
$$

Proposition

For a distributive lattice $\mathbf{L}, \mathcal{A}\left(\mathcal{S}_{\mathbf{L}}^{\delta}\right) \simeq \mathbf{L}^{\delta}$.

Canonical extension of coherent categories

Properties of $\mathbf{C}^{\boldsymbol{\delta}}=\mathcal{A}\left(\mathcal{S}_{\mathbf{C}}^{\boldsymbol{\delta}}\right)$:
1 subobject lattices are in DL^{+};
2 pullback morphisms are complete lattice homomorphisms.
Coh $^{+}=$coherent categories satisfying (1) and (2).

Canonical extension of coherent categories

Properties of $\mathbf{C}^{\boldsymbol{\delta}}=\mathcal{A}\left(\mathcal{S}_{\mathbf{C}}^{\boldsymbol{\delta}}\right)$:
1 subobject lattices are in DL^{+};
2 pullback morphisms are complete lattice homomorphisms.
$\mathbf{C o h}^{+}=$coherent categories satisfying (1) and (2).
Universal characterisation: $\quad \mathbf{C} \xrightarrow{M_{0}} \mathbf{C}^{\delta}$
where $\mathbf{C} \in \mathbf{C o h}, \mathbf{E}, \mathbf{C}^{\delta} \in \mathbf{C o h}^{+}, M$ a coherent functor satisfying:

Canonical extension of coherent categories

Properties of $\mathbf{C}^{\delta}=\mathcal{A}\left(\mathcal{S}_{\mathbf{C}}^{\delta}\right)$:
1 subobject lattices are in DL^{+};
2 pullback morphisms are complete lattice homomorphisms.
$\mathbf{C o h}^{+}=$coherent categories satisfying (1) and (2).
Universal characterisation:

where $\mathbf{C} \in \mathbf{C o h}, \mathbf{E}, \mathbf{C}^{\delta} \in \mathbf{C o h}^{+}, M$ a coherent functor satisfying:
for all $A \xrightarrow{\alpha} B$ in \mathbf{C}, ρ (prime) filter in $\mathcal{S}_{C}(A)$,

$$
\exists_{M(\alpha)}(\bigwedge\{M(U) \mid U \in \rho\}) \cong \bigwedge\left\{\exists_{M(\alpha)}(M(U)) \mid U \in \rho\right\}
$$

Canonical extension of Heyting categories

Heyting categories provide semantics for first order logic.

Canonical extension interacts well with Heyting structure:
■ for a coherent category $\mathbf{C}, \mathbf{C}^{\delta}$ is a Heyting category;

- for a Heyting category $\mathbf{C}, \mathbf{C} \hookrightarrow \mathbf{C}^{\delta}$ is a Heyting functor;
- for a morphism of Heyting categories $F: \mathbf{C} \rightarrow \mathbf{D}$,

$$
F^{\delta}: \mathbf{C}^{\delta} \rightarrow \mathbf{D}^{\delta}
$$

is again Heyting functor.

Topos of types

Topos of types was introduced by Makkai in 1979 as:
■ 'a reasonable codification of the 'discrete' (non topological) syntactical structure of types of the theory',

- a tool to prove representation theorems,

■ 'conceptual tool meant to enable us to formulate precisely certain natural intuitive questions'.

Some later work by: Magnan \& Reyes and Butz.

Topos of types

Topos of types was introduced by Makkai in 1979 as:
■ 'a reasonable codification of the 'discrete' (non topological) syntactical structure of types of the theory',

- a tool to prove representation theorems,
- 'conceptual tool meant to enable us to formulate precisely certain natural intuitive questions'.

Some later work by: Magnan \& Reyes and Butz.

Alternative construction:

The functor $\mathcal{S}_{\mathbf{C}}^{\delta}: \mathbf{C}^{o p} \rightarrow \mathbf{D L}$ is an internal locale in $\operatorname{Sh}\left(\mathbf{C}, J_{c o h}\right)$.
Then $\operatorname{Sh}\left(\mathcal{S}_{\mathbf{C}}^{\delta}\right) \simeq T(\mathbf{C})=$ topos of types of \mathbf{C}.

Topos of types

Let \mathcal{L} be a coherent logic, $\mathfrak{A}=(A, \ldots)$ a model of \mathcal{L}.
For $a \in A$, the type of a in \mathfrak{A} is given by:

$$
t(a, \mathfrak{A}):=\{\phi(x) \mid \mathfrak{A} \vDash \phi[a]\} .
$$

This is a prime filter in

$$
F m_{\mathcal{L}}(\langle x\rangle) / \vdash \cap-1=\operatorname{Sub}_{\mathbf{C}_{\mathcal{L}}}(x \mid \top)
$$

(where $\mathbf{C}_{\mathcal{L}}=$ syntactic category of \mathcal{L}).

Idea: study prime filters in subobject lattices.

Topos of types

Makkai defined, for a coherent category C,

$$
\mathbf{T}(\mathbf{C})=\operatorname{Sh}\left(\tau \mathbf{C}, \mathbf{J}_{\mathbf{p}}\right)
$$

The category $\tau \mathbf{C}$ consists of
Objects: \quad pairs (A, ρ) where $A \in \mathbf{C}$ and ρ prime filter in $S u b_{\mathbf{C}}(A)$
Morphisms: local continuous maps
Topology J_{p} is the topology induced by the coherent topology on the category of filters of \mathbf{C}.

Topos of types

Makkai defined, for a coherent category C,

$$
\mathbf{T}(\mathbf{C})=\operatorname{Sh}\left(\tau \mathbf{C}, \mathbf{J}_{\mathbf{p}}\right)
$$

The category $\tau \mathbf{C}$ consists of
Objects: \quad pairs (A, ρ) where $A \in \mathbf{C}$ and ρ prime filter in $S u b_{\mathbf{C}}(A)$
Morphisms: local continuous maps
Topology J_{p} is the topology induced by the coherent topology on the category of filters of \mathbf{C}.

Theorem: for a coherent category $\mathbf{C}, T(\mathbf{C}) \simeq \operatorname{Sh}\left(\mathcal{S}_{\mathbf{C}}^{\boldsymbol{\delta}}\right)$.

Topos of types

Theorem: $T(\mathbf{C}) \simeq \operatorname{Sh}\left(\mathcal{S}_{\mathbf{C}}^{\boldsymbol{\delta}}\right)$.

Proof:

■ $T(\mathbf{C})=\operatorname{Sh}(\tau \mathbf{C})$
$\tau \mathbf{C}$: pairs (A, ρ) with $A \in \mathbf{C}$ and ρ prime filter in $S u b_{\mathbf{C}}(A)$.

- $\operatorname{Sh}\left(\mathcal{S}_{\mathbf{C}}^{\delta}\right) \simeq \operatorname{Sh}\left(\mathbf{C} \ltimes \mathcal{S}_{\mathbf{C}}^{\boldsymbol{\delta}}\right)$
$\mathbf{C} \ltimes \mathcal{S}_{\mathbf{C}}^{\delta}$: pairs (A, u) with $A \in \mathbf{C}$ and $u \in \mathcal{S}_{\mathbf{C}}^{\delta}(A)$.
We have:

$$
T(\mathbf{C})=\operatorname{Sh}(\tau \mathbf{C}) \simeq \operatorname{Sh}(\mathbf{D}) \simeq \operatorname{Sh}\left(\mathbf{C} \ltimes \mathcal{S}_{\mathbf{C}}^{\delta}\right) \simeq \operatorname{Sh}\left(\mathcal{S}_{\mathbf{C}}^{\delta}\right) .
$$

($\mathbf{D}=$ subcategory of $\mathbf{C} \ltimes \mathcal{S}_{\mathbf{C}}^{\delta}$ of pairs (A, x) with $x \in J^{\infty}\left(\mathcal{S}_{\mathbf{C}}^{\delta}(A)\right)$).

Topos of types and morphisms

Theorem: for a coherent functor $F: \mathbf{C} \rightarrow \mathbf{D}$,
\square if F is conservative, then $T(F): T(\mathbf{D}) \rightarrow T(\mathbf{C})$ is a geometric surjection;

■ if F is a morphism of Heyting categories, then $T(F): T(\mathbf{D}) \rightarrow T(\mathbf{C})$ is open.

Proof: use facts on

- canonical extension of lattice homomorphism
- correspondence between internal locale morphisms and geometric morphisms

Topos of types and the class of models

For a distributive lattice L,
prime filters of $L \leftrightarrow$ lattice homomorphisms $L \rightarrow \mathbf{2}$
$\leftrightarrow \quad$ 'models of L^{\prime}.
$L^{\delta}=\operatorname{Dwn}(\operatorname{Mod}(L))$.
Categorical analogue:
$\operatorname{Mod}(\mathbf{C})=$ coherent functors $M: \mathbf{C} \rightarrow$ Set.
Study: $\boldsymbol{S e t}^{\operatorname{Mod}(\mathbf{C})}$.
We have to restrict to an appropriate subcategory \mathcal{K} of $\operatorname{Mod}(\mathbf{C})$.
Question: How does $\mathbf{S e t}^{\mathcal{K}}$ relate to $T(\mathbf{C})=\operatorname{Sh}\left(\mathcal{S}_{\mathbf{C}}^{\delta}\right)$?

Topos of types and the class of models

Question: How does $\mathbf{S e t}^{\mathcal{K}}$ relate to $T(\mathbf{C})=\operatorname{Sh}\left(\mathcal{S}_{\mathbf{C}}^{\boldsymbol{\delta}}\right)$?
Evaluation functor $\mathrm{ev}: \mathbf{C} \rightarrow$ Set $^{\mathcal{K}}$

$$
\begin{aligned}
A \quad \mapsto \quad e v(A): \mathcal{K} & \rightarrow \text { Set } \\
M & \mapsto M(A)
\end{aligned}
$$

Gives a geometric morphism $\phi_{e v}: \operatorname{Set}^{\mathcal{K}} \rightarrow \operatorname{Sh}\left(\mathbf{C}, J_{c o h}\right)$.

Topos of types and the class of models

Question: How does $\mathbf{S e t}^{\mathcal{K}}$ relate to $T(\mathbf{C})=\operatorname{Sh}\left(\mathcal{S}_{\mathbf{C}}^{\boldsymbol{\delta}}\right)$?
Evaluation functor $\mathrm{ev}: \mathbf{C} \rightarrow \mathbf{S e t}^{\mathcal{K}}$

$$
\begin{aligned}
A \quad \mapsto \quad e v(A): \mathcal{K} & \rightarrow \text { Set } \\
M & \mapsto M(A)
\end{aligned}
$$

Gives a geometric morphism $\phi_{e v}: \operatorname{Set}^{\mathcal{K}} \rightarrow \operatorname{Sh}\left(\mathbf{C}, J_{c o h}\right)$.
Theorem: the topos of types yields the hyper-connected localic factorisation of $\operatorname{Set}^{\mathcal{K}} \xrightarrow{\phi_{e v}} \operatorname{Sh}\left(\mathbf{C}, J_{c o h}\right)$:

Topos of types and the class of models

Theorem: the topos of types yields the hyper-connected localic factorisation of $\mathbf{S e t}^{\mathcal{K}} \xrightarrow{\phi_{e v}} \operatorname{Sh}\left(\mathbf{C}, J_{c o h}\right)$.

Description of the factorisation:

$T(\mathbf{C})=\operatorname{Sh}\left(S_{\mathbf{C}}^{\boldsymbol{\delta}}\right)$
To prove: $S_{\mathbf{C}}^{\boldsymbol{\delta}} \cong\left(\phi_{e v}\right)_{*}\left(\Omega_{S e t} \kappa\right)$ in $\operatorname{Sh}\left(\mathbf{C}, J_{\text {coh }}\right)$.

Topos of types and the class of models

To prove: $S_{\mathbf{C}}^{\boldsymbol{\delta}} \cong\left(\phi_{e v}\right)_{*}\left(\Omega_{S e t \kappa}\right)$ in $\operatorname{Sh}\left(\mathbf{C}, J_{c o h}\right)$
Recall: $\mathbf{C} \xrightarrow{y} S h\left(\mathbf{C}, J_{\text {coh }}\right)$

Set $^{\mathcal{K}}$
Hence, for $A \in \mathbf{C}$,

$$
\begin{aligned}
\left(\phi_{e v}\right)_{*}\left(\Omega_{S e t} \mathcal{\kappa}\right)(A) & =\operatorname{Hom}_{\text {Set }^{\mathcal{K}}} \mathcal{K}\left(\operatorname{ev}(A), \Omega_{S e t} \mathcal{\kappa}\right) \\
& =\operatorname{Sub}(\operatorname{ev}(A)) .
\end{aligned}
$$

Let $\sigma_{A}: S_{\mathbf{C}}^{\delta}(A) \rightarrow\left(\phi_{e v}\right)_{*}\left(\Omega_{S e t} \kappa\right)(A)$ be the unique map given by:

Topos of types and the class of models

To prove: $S_{\mathbf{C}}^{\delta} \cong\left(\phi_{e v}\right)_{*}\left(\Omega_{S e t} \mathcal{K}\right)$ in $\operatorname{Sh}\left(\mathbf{C}, J_{\text {coh }}\right)$
Recall: $\mathbf{C} \stackrel{y}{\longrightarrow} S h\left(\mathbf{C}, J_{\text {ooh }}\right)$

Set $^{\mathcal{K}}$
Hence, for $A \in \mathbf{C}$,

$$
\begin{aligned}
\left(\phi_{e v}\right)_{*}\left(\Omega_{S e t} \kappa\right)(A) & =\operatorname{Hom}_{\mathbf{S e t}^{\mathcal{K}}}\left(\operatorname{ev}(A), \Omega_{S e t} \mathcal{K}\right) \\
& =\operatorname{Sub}(\operatorname{ev}(A)) .
\end{aligned}
$$

Let $\sigma_{A}: S_{\mathbf{C}}^{\delta}(A) \rightarrow\left(\phi_{e v}\right)_{*}\left(\Omega_{S e t} \kappa\right)(A)$ be the unique map given by:

$$
\begin{aligned}
\operatorname{Sub}_{\mathbf{C}}(A) & \rightarrow \operatorname{Sub}(\operatorname{ev}(A)) \\
U & \mapsto \operatorname{ev}(U) .
\end{aligned}
$$

Future work

- Study the following diagram (where $\mathcal{K} \subseteq \operatorname{Mod}(\mathbf{C})$):

■ Apply the developed theory in the study of first order logics:

- study interpolation problems for first order logics, e.g. for IPL $+(\phi \rightarrow \psi) \vee(\psi \rightarrow \phi)$;
- study problems in model theory.

Properties of the class \mathcal{K}

The category $\mathcal{K} \hookrightarrow \operatorname{Mod}(\mathbf{C})$ should satisfy:
1 for all $M: \mathbf{C} \rightarrow$ Set in $\mathcal{K}, A \in \mathbf{C}, \rho$ prime filter in $S u b_{\mathbf{C}}(A)$,

$$
\exists_{M(\alpha)}(\bigwedge\{M(U) \mid U \in \rho\}) \cong \bigwedge\left\{\exists_{M(\alpha)}(M(U)) \mid U \in \rho\right\}
$$

2 for all $A \in \mathbf{C}, \rho$ prime filter in $\operatorname{Sub}_{\mathbf{C}}(A)$, there exist $M \in \mathcal{K}$ and $a \in M(A)$ s.t.

$$
\rho=t_{A}(a, M)=\left\{U \in S u b_{\mathbf{C}}(A) \mid a \in M(U)\right\} ;
$$

3 for all $A \in \mathbf{C}, M, N \in \mathcal{K}, a \in M(A), b \in N(A)$, if

$$
b \in \bigwedge\left\{N(U) \mid U \in t_{A}(a, M)\right\}
$$

then there exists a morphism $h: M \rightarrow N$ s.t. $b=h_{A}(a)$.

