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Outline

Duality theory and canonical extension for propositional logic

Semantics for coherent first order logic (A, Vv, L, T, 3):

m Coherent hyperdoctrines
m Coherent categories

Canonical extension in the categorical setting

Relation to Makkai's topos of types
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Stone duality

Boolean algebras:  structures (B, A,V,—,0,1).

Boolean spaces: compact, totally disconnected, Hausdorff spaces.
Boolean algebras = Boolean spaces
Cl(X) — X
B — (PrFit(B), )
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Stone duality

Boolean algebras:  structures (B, A,V,—,0,1).

Boolean spaces: compact, totally disconnected, Hausdorff spaces.
Boolean algebras = Boolean spaces
Cl(X) — X
B — (PrFit(B), )

Stone Representation Theorem: every Boolean algebra is
embeddable in a powerset algebra.

Proof: for a Boolean algebra B,
B = Cl(PrFlt(B)) — P(PrFlt(B)).
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Stone duality and canonical extension

Canonical extension: algebraic description of topological duality.
Study B = CI(PrFlt(B)) — P(PrFit(B)) = B.

At
CABA Sets
P
Qe |U U
Boolean Prt Boolean
algebras ol spaces
CABA = complete and atomic Boolean algebras.
Boolean spaces = compact, totally disconnected

Hausdorff spaces.
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Canonical extension for distributive lattices

Canonical extension: algebraic description of topological duality.
Study L = ClDwn(PrFIit(L)) — Dwn(PrFIt(L)) = L.

jOO
DL™T posets
Dwn
Qe |U U
distributive Prit Priestley
lattices ClDwn spaces
DL* = completely distributive algebraic lattices.
Priestley spaces = compact, totally order-disconnected

Hausdorff spaces.
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Canonical extension of distributive lattices

DL™ = completely distributive algebraic lattices.

Canonical extension is left adjoint to DL < DL.

Universal characterisation of canonical extension:

L_6>L5

Xéf

K

where L € DL and K, L° € DL™.
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Interpolation in propositional logic

Let T be a theory in intuitionistic propositional logic.

Question: does T have the interpolation property, i.e.,

for all formulas ¢(p, q) and 1 (p,r) with ¢(p, q) Fr ¥ (p, 1),
there exists a formula 6(p) s.t.

o(p,q) Fr 0(p) and  O(p) Fr (p,7).
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Interpolation in propositional logic

Let T be a theory in intuitionistic propositional logic.

Question: does T have the interpolation property, i.e.,

for all formulas ¢(p, q) and 1 (p,r) with ¢(p, q) Fr ¥ (p, 1),
there exists a formula 6(p) s.t.

o(p,q) Fr 0(p) and  O(p) Fr (p,7).

Question: are monomorphisms stable under pushout in V7
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Interpolation in first-order logic

Let T be a theory in intuitionic first order logic.
Question: does T have the interpolation property, i.e.,
for all sentences ¢, ¢ with ¢ b1 1, there exists a sentence 0 s.t.

B ¢Fr0and 0t

every relation and function symbol which occurs in 6
occurs in both ¢ and .

Open problem for some first order intuitionistic theories, e.g.,

T = IFOL +(¢ — ) V () — ¢).
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Algebraic semantics for coherent logic

We start from

Signature: Y= (fo,--, fx—1,Roy..., Ri—1)
Set of var's: X ={xo,x1,...}

Equality: =

Connectives: AV, T, L3

Derivability notion: F  (given by axioms and rules)

Question:
What properties does the logic over 3 have?
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Algebraic semantics for coherent logic

We start from

Signature: Y= (fo,--, fx—1,Roy..., Ri—1)
Set of var's: X ={xo,x1,...}

Equality: =

Connectives: AV, T, L3

Derivability notion: F  (given by axioms and rules)

Question:
What properties does the logic over 3 have?

First observation:
For each sequence of variables Z = (zg, ..., Tn_1),
(Fm(Z) /-4, F) is a distributive lattice.
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Algebraic semantics for coherent logic

0 (z0) (0, 71)
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Algebraic semantics for coherent logic

(o)
é(c) $(=0)

0 (z0) (0, 71)

Substitutions:
xo — C

d(zo) = é(c)
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Algebraic semantics for coherent logic

b(c) — Plzo) | <
S e
() (z0) (zo, 1)
Substitutions:

xo — C

d(zo) = é(c)
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Algebraic semantics for coherent logic

Contexts and substitutions form a category B:
Objects: contexts &

Morphism # — ¢:  m-tuple (tg,. .., tm—1)
s.t. m = length(y) and FV (t;) C &
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Algebraic semantics for coherent logic

Contexts and substitutions form a category B:
Objects: contexts &

Morphism # — ¢:  m-tuple (tg,. .., tm—1)
s.t. m = length(y) and FV (t;) C &

This category has finite products:

(wo, 1)

<$0, T, .’L'2>
A
“(to, t1, 50)

(.

(0, 1)

(to,t1) (s0)
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Algebraic semantics for coherent logic

Formulas and substitutions: functor B°? — DL

z — Fm(Z)
g fotn )y o ) — Fm(3)
oY) = o[t/y]

(c) (0, f(z0))
<SCO, 1’1)
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Algebraic semantics for coherent logic

Existential quantification: related to the inclusion map

(z0) Y(zo,x1)

o (P(20,21)) F o(x0)

(o, 21) = ¢(xo)
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Algebraic semantics for coherent logic

Existential quantification: related to the inclusion map

(z0) Y(zo,x1)

Elrl (’l,b(.’l)(],l)l)) }_:vo ¢(w0)

(w0, 1) Fagar  1(9(20))
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Algebraic semantics for coherent logic

A coherent hyperdoctrine is a functor P: B°P? — DL s.t.
B is a category with finite limits;

for all A% B € B, P(a) has a left adjoint 3, with
m Frobenius reciprocity, i.e., for all a € P(A), b € P(B),
Ja(a A P(a)(b)) =Fa(a) A b

m Beck-Chevalley condition, i.e., for every pullback square
Q——B
b
A T C

in B, P(8) 0 3o = Ja 0 P(B').
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Algebraic semantics for coherent logic

Examples of coherent hyperdoctrines:

m Syntactic hyperdoctrine
B = contexts and substitutions
F: B — DL

—

x — Fm(i")/kmﬁ

m Powerset hyperdoctrine
B = Set

P: B” - DL
A —  P(A)

AL B = pB) LS P
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Coherent hyperdoctrines and coherent categories

A coherent hyperdoctrine is a functor P: B’ — DL s.t.
B has finite limits:

for all A% B in B, P(«) has a left adjoint satisfying
Frobenius and Beck-Chevalley.
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Coherent hyperdoctrines and coherent categories

A coherent hyperdoctrine is a functor P: B’ — DL s.t.
B has finite limits:

for all A% B in B, P(«) has a left adjoint satisfying
Frobenius and Beck-Chevalley.

A coherent category is a category C satisfying
C has finite limits;
C has stable finite unions;

C has stable images.
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Coherent hyperdoctrines and coherent categories

A coherent hyperdoctrine is a functor P: B’ — DL s.t.
B has finite limits:

for all A% B in B, P(«) has a left adjoint satisfying
Frobenius and Beck-Chevalley.

A coherent category is a category C satisfying
C has finite limits;
C has stable finite unions;

C has stable images.

Remark: for a coherent category C, Subc: C? — DL is a
coherent hyperdoctrine.
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Coherent hyperdoctrines and coherent categories

Proposition: there is a 2-categorical adjunction
A: CHyp < Coh: S,

where 4 S and A(S(C)) ~ C.
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Coherent hyperdoctrines and coherent categories

Proposition: there is a 2-categorical adjunction
A: CHyp < Coh: S,

where 4 S and A(S(C)) ~ C.

For C € Coh, S(C)=S8c:C®? — DL
A Subc(A)
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Coherent hyperdoctrines and coherent categories

Proposition: there is a 2-categorical adjunction
A: CHyp < Coh: S,

where 4 S and A(S(C)) ~ C.

For C € Coh, S(C)=S8c:C®? — DL
A Subc(A)

For P: B — DL, A(P) is the category with:

objects are pairs (A, a), where A € B, a € P(A);

a morphism (A, a) — (B,b) is an element f € P(A x B)
which is a functional relation (A, a) — (B,b).
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Canonical extension of coherent hyperdoctrines

5
Recall: canonical extension for DL's is a functor DL i> DL™T.

Definition
For a coh. hyperdoctrine P: B°? — DL we define:

. op P (')5
P°: B’ — DL — DL.
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Canonical extension of coherent hyperdoctrines

5
Recall: canonical extension for DL's is a functor DL i> DL™T.

Definition
For a coh. hyperdoctrine P: B°? — DL we define:

. op P (')5
P°: B’ — DL — DL.

Proposition
For a coh. hyperdoctrine P, P? is again a coh. hyperdoctrine.

Proof: check that, for all A % B in B, P°(a) has a left adjoint
satisfying BC and Frobenius.
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Canonical extension of coherent categories

We have:
m adjunction A: CHyp < Coh: S, C ~ A(Sc);

5
u for P € CHyp, P*: B» L DL 25 DLL.

Definition

For a coherent category C we define:
C2 = A(SY).
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Canonical extension of coherent categories

We have:
m adjunction A: CHyp < Coh: S, C ~ A(Sc);

5
u for P € CHyp, P*: B» L DL 25 DLL.

Definition

For a coherent category C we define:
C2 = A(SY).

Proposition
For a distributive lattice L, A(S{) ~ LY.
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Canonical extension of coherent categories

Properties of C° = A(SY):

subobject lattices are in DL™;

pullback morphisms are complete lattice homomorphisms.

Coh™ = coherent categories satisfying (1) and (2).
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Canonical extension of coherent categories

Properties of C° = A(SY):

subobject lattices are in DL™;

pullback morphisms are complete lattice homomorphisms.
Coh™ = coherent categories satisfying (1) and (2).

. .. M,
Universal characterisation: cC—% (ol

E

where C € Coh, E,C° € Coh™, M a coherent functor satisfying:
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Canonical extension of coherent categories

Properties of C° = A(SY):

subobject lattices are in DL™;

pullback morphisms are complete lattice homomorphisms.
Coh™ = coherent categories satisfying (1) and (2).

. .. M,
Universal characterisation: cC—% (ol

E

where C € Coh, E,C° € Coh™, M a coherent functor satisfying:
for all A% B in C, p (prime) filter in Sc(A),
(@) (NMMU) U € p}) = N By (M(U)) | U € p}.
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Canonical extension of Heyting categories

Heyting categories provide semantics for first order logic.

Canonical extension interacts well with Heyting structure:
m for a coherent category C, C? is a Heyting category;
m for a Heyting category C, C — C? is a Heyting functor;
m for a morphism of Heyting categories F': C — D,
F°. C’ - D°

is again Heyting functor.
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Topos of types

Topos of types was introduced by Makkai in 1979 as:

m ‘a reasonable codification of the ‘discrete’ (non topological)
syntactical structure of types of the theory’,

m a tool to prove representation theorems,

m ‘conceptual tool meant to enable us to formulate precisely
certain natural intuitive questions’.

Some later work by: Magnan & Reyes and Butz.
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Topos of types

Topos of types was introduced by Makkai in 1979 as:

m ‘a reasonable codification of the ‘discrete’ (non topological)
syntactical structure of types of the theory’,

m a tool to prove representation theorems,

m ‘conceptual tool meant to enable us to formulate precisely
certain natural intuitive questions’.

Some later work by: Magnan & Reyes and Butz.

Alternative construction:
The functor Sé: C° — DL is an internal locale in Sh(C, Jeon)-
Then Sh(SY) ~ T(C) = topos of types of C.
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Topos of types

Let £ be a coherent logic, 2 = (A,...) a model of L.
For a € A, the type of a in 2l is given by:

t(a, ) := {¢(x) | A F pla]}.

This is a prime filter in

Fmg((2)) /o4 = Subc, (x| T)

(where C = syntactic category of £).

Idea: study prime filters in subobject lattices.
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Topos of types

Makkai defined, for a coherent category C,
T(C) = Sh(rC, Jp).
The category 7C consists of

Objects: pairs (A, p) where A € C and p prime filter in Subc(A)

Morphisms: local continuous maps

Topology J), is the topology induced by the coherent topology on
the category of filters of C.
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Topos of types

Makkai defined, for a coherent category C,
T(C) = Sh(rC, Jp).
The category 7C consists of

Objects: pairs (A, p) where A € C and p prime filter in Subc(A)

Morphisms: local continuous maps

Topology J), is the topology induced by the coherent topology on
the category of filters of C.

Theorem: for a coherent category C, T(C) ~ Sh(S%).
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Topos of types

Theorem: T(C) ~ Sh(SY).

Proof:
m T(C) = Sh(rC)
T7C: pairs (4, p) with A € C and p prime filter in Subc(A).

m Sh(SY) ~ Sh(CxSL)
C x S&: pairs (A,u) with A € C and u € S&(A).

We have:
T(C) = Sh(rC) ~ Sh(D) ~ Sh(C x 8&) ~ Sh(S%).

(D = subcategory of CxSZ of pairs (A, x) with z € J®(S&(A))).
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Topos of types and morphisms

Theorem: for a coherent functor F': C — D,

m if F' is conservative, then T(F): T(D) — T(C) is a
geometric surjection;

m if F'is a morphism of Heyting categories, then
T(F): T(D) — T(C) is open.

Proof: use facts on
m canonical extension of lattice homomorphism
m correspondence between internal locale morphisms and

geometric morphisms
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Topos of types and the class of models

For a distributive lattice L,

prime filters of L. < lattice homomorphisms L — 2
< ‘models of L'.

L% = Dwn(Mod(L)).

Categorical analogue:
Mod(C) = coherent functors M : C — Set.

Study: SetMo4(©),

We have to restrict to an appropriate subcategory K of Mod(C).

Question: How does Set”" relate to T(C) = Sh(S&)?
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Topos of types and the class of models

Question: How does Set” relate to T(C) = Sh(SL)?

Evaluation functor ev: C — Seth

A — ev(d): K — Set
M — M((A)

Gives a geometric morphism ¢, : Set® — Sh(C, Jeon)-
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Topos of types and the class of models

Question: How does Set” relate to T(C) = Sh(SL)?

Evaluation functor ev: C — Seth

A — ev(d): K — Set
M — M((A)

Gives a geometric morphism ¢, : Set® — Sh(C, Jeon)-

Theorem: the topos of types yields the hyper-connected localic
factorisation of Set® 22 Sh(C, Jeon):

7(C)

o

Set’C W) Sh(ca Jcoh)
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Topos of types and the class of models

Theorem: the topos of types yields the hyper-connected localic
factorisation of SetX 2y Sh(C, Jeon)-

Description of the factorisation:

Sh((¢ev)«(Qserc))

|

Sh(C, Jeon)

Set/

T(C) = Sh(SL)

To prove: S& 2 (¢ey)«(Qgepc) in SR(C, Jeon).
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Topos of types and the class of models

To prove: S& 2 (¢ey)w(Qgerx) in Sh(C, Jeon)

Recal: ¢ —2- Sh(C, Jeon)

S

SetX

Hence, for A € C,

(Pev)s(Qgerc)(A) = Homgeer(ev(A), Qgepr)
= Sub(ev(A)).

Let 041 SS(A) = (Bev)s(Qgerxc)(A) be the unique map given by:
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Topos of types and the class of models

To prove: S& 2 (¢ey)w(Qgerx) in Sh(C, Jeon)
Recall: ¢ —2> Sh(C, Jeop)
X\ g jd»m
Set®

Hence, for A € C,
(Pev)s(Qgerc)(A) = Homgeer(ev(A), Qgepr)
= Sub(ev(A)).
Let 041 SS(A) = (Bev)s(Qgerxc)(A) be the unique map given by:

Subc(A) —  Sub(ev(A))
U — evU).
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Future work

m Study the following diagram (where K C Mod(C)):

7(C)

o

Set’C ? Sh(C, Jcoh)

m Apply the developed theory in the study of first order logics:

m study interpolation problems for first order logics,
e.g. for IPL + (¢ = ¢) V (¥ — ¢);

m study problems in model theory.
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Properties of the class K

The category K < Mod(C) should satisfy:
for all M: C — Set in K, A € C, p prime filter in Subc(A),
Ini(a) (N M) U € p}) = NBu)(MU))|U € p};

for all A € C, p prime filter in Subc(A), there exist M € K
and a € M(A) s.t.

p=ta(a,M)={U € Subc(A)|a € M(U)};
forall Ac C, M,N € K, a € M(A), b€ N(A), if
be N{NU)|U € ta(a, M)}

then there exists a morphism h: M — N s.t. b= ha(a).
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