Completeness and definability of a modal logic interpreted over iterated strict partial orders

Philippe Balbiani Levan Uridia

Institut de recherche en informatique de Toulouse CNRS — Université de Toulouse

Escuela Técnica Superior de Ingeniería Informática Universidad Rey Juan Carlos

(ロ) (同) (三) (三) (三) (三) (○) (○)

Given a topology τ on a nonempty set X

• the τ -derived set $d_{\tau}(A)$ of a set $A \subseteq X$ of points =

the set of all limit points of A with respect to τ

The derivative operator d_{τ} possesses interesting properties

What happens if we iterate the derivative operator $d_{ au}$

• considering the sequence d_{τ} , $d_{\tau} \circ d_{\tau}$, ... of operators

If τ is T_D , then

• each element d_{τ}^{α} of this sequence is a derivative operator

A question arises

 what is the link between the topologies τ_α corresponding to the elements d^α_τ of the sequence

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The answer is simple

• the topologies τ_{α} are getting finer when α increases

The lattice of all T_D topologies on X is complete

this iteration process should stop

The Cantor-Bendixson rank of (X, τ) is defined as

• the least ordinal α such that $d_{\tau}(d_{\tau}^{\alpha}(X)) = d_{\tau}^{\alpha}(X)$

A consequence of Tarski's fixpoint theorem is that

there exists an ordinal α^{*} such that α ≤ α^{*} and d_τ ∘ d_τ^{α^{*}} = d_τ^{α^{*}}

(日) (日) (日) (日) (日) (日) (日)

Any strict partial order R on X defines a function θ_R which

▶ associates to each strict partial order $S \subseteq R$ on X the strict partial order $\theta_R(S) = R \circ S$ on X

What happens if we iterate the function θ_R

▶ considering the sequence R, $\theta_R(R)$, ... of partial orders

Simply

 the partial orders θ^α_R(R) are getting smaller when α increases

(日) (日) (日) (日) (日) (日) (日)

The lattice of all strict partial orders on X is complete

this iteration process should stop

There exists an ordinal α^* such that

$$\bullet \ \theta_R(\theta_R^{\alpha^*}(R)) = \theta_R^{\alpha^*}(R)$$

If *R* is the strict partial order on *X* corresponding to a given Alexandroff T_D derivative operator *d*, then

 θ^{α*}_R(R) is a strict partial order on X corresponding to the derivative operator d^{α*}_τ considered above

Contents

- 1. Introduction
- 2. Topologies and derivative operators
- 3. Alexandroff T_D derivative operators and strict partial orders

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- 4. Cantor-Bendixson ranks
- 5. A modal logic
- 6. Axiomatization and completeness
- 7. Definability
- 8. Notes

A **topology** on X is a set τ of subsets of X such that

- $\blacktriangleright \ \emptyset \in \tau$
- ► **X** ∈ *τ*
- if $A, B \in \tau$, then $A \cap B \in \tau$
- If (A_i)_i is a collection of subsets of X such that A_i ∈ τ for every i, then ⋃_i A_i ∈ τ

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

We shall say that

• $A \subseteq X$ is τ -closed iff $X \setminus A \in \tau$

- τ is said to be $\mathbf{T_D}$ iff
 - ▶ for all $x \in X$, there exists $A, B \in \tau$ such that $A \setminus B = \{x\}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

We shall say that τ is **Alexandroff** iff

• each intersection of members of τ is in τ

Let \leq be the binary relation between topologies on X such that $imes au \leq au'$ iff $au \subseteq au'$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Remark that for all topologies τ, τ' on X

• if $\tau \leq \tau'$, then if τ is T_D , then τ' is T_D

Example: the Sierpiński space

Given a topology τ on X

▶ let L_{τ} be the set of all topologies τ' on X such that $\tau \leq \tau'$

Remark that

- the least element of L_{τ} is τ
- ► the greatest element of L_τ is the topology P(X)
- the least upper bound of a family {τ_i': i ∈ I} in L_τ is the intersection of all τ' ∈ L_τ such that ∪{τ_i': i ∈ I} ⊆ τ'
- the greatest lower bound of a family $\{\tau'_i: i \in I\}$ in L_{τ} is $\bigcap \{\tau'_i: i \in I\}$
- (L_{τ}, \leq) is a complete lattice

Derivative operators

A derivative operator on X is a function $d: \mathcal{P}(X) \to \mathcal{P}(X)$ such that

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- $d(\emptyset) = \emptyset$
- ▶ for all $A, B \subseteq X, d(A \cup B) = d(A) \cup d(B)$
- ▶ for all $A \subseteq X$, $d(d(A)) \subseteq d(A) \cup A$
- for all $x \in X$, $x \notin d(\{x\})$
- $A \subseteq X$ is said to be
 - d-closed iff $d(A) \subseteq A$

Derivative operators

We shall say that d is T_D iff

▶ for all $A \subseteq X$, $d(d(A)) \subseteq d(A)$

d is said to be Alexandroff iff

for all x ∈ X, there exists a greatest A ⊆ X such that A is d-closed and x ∉ A

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Derivative operators

Let \leq be the binary relation between derivative operators on X such that

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• $d \leq d'$ iff for all $A \subseteq X$, $d(A) \subseteq d'(A)$

Remark that for all derivative operators d, d' on X

• if $d \leq d'$, then if d' is T_D , then d is T_D

Example

- $\blacktriangleright X = \{x, y\}$
- ► $d(\emptyset) = \emptyset$
- $d(\{x\}) = \{y\}$
- $\blacktriangleright d(\{y\}) = \emptyset$
- $\blacktriangleright d(X) = \{y\}$

Derivative operators

Given a derivative operator d on X

► let L_d be the set of all derivative operators d' on X such that d' ≤ d

Remark that

- ▶ the least element of L_d is the derivative operator d_\emptyset : $\mathcal{P}(X) \rightarrow \mathcal{P}(X)$ such that for all $A \subseteq X$, $d_\emptyset(A) = \emptyset$
- the greatest element of L_d is d
- ► we do not know any representation of the least upper bound and the greatest lower bound of a family {d'_i: i ∈ I} in L_d
- (L_d, \leq) is a complete lattice

Topologies v. derivative operators

Given a topology τ on X

▶ let \mathbf{d}_{τ} be the function d_{τ} : $\mathcal{P}(X) \to \mathcal{P}(X)$ such that for all $A \subseteq X$, $d_{\tau}(A) = \{x: x \text{ is a } \tau\text{-limit point of } A\}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Remark that

- d_{τ} is a derivative operator on X
- ▶ for all $A \subseteq X$, A is d_{τ} -closed iff A is τ -closed
- d_{τ} is T_D iff τ id T_D
- d_{τ} is Alexandroff iff τ is Alexandroff

•
$$d_{\tau'} \leq d_{\tau}$$
 iff $\tau \leq \tau'$

Topologies v. derivative operators

Given a derivative operator d on X

let \(\tau_d\) be the set of \(d\)-open subsets of \(X\)

Remark that

- τ_d is a topology on X
- ▶ for all $A \subseteq X$, A is τ_d -closed iff A is d-closed

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- τ_d is T_D iff d id T_D
- τ_d is Alexandroff iff *d* is Alexandroff
- ► $\tau_{d'} \leq \tau_d$ iff $d \leq d'$

Topologies v. derivative operators

Let us further remark that

$$\tau_{d_{\tau}} = \tau$$

$$d_{\tau_d} = d$$

Given a topology τ on X

the function f: L_τ → L_{d_τ} such that f(τ') = d_{τ'} is an anti-isomorphism between (L_{d_τ}, ≤) and (L_τ, ≤)

Given a derivative operator d on X

the function *f*: L_d → L_{τd} such that f(d') = τ_{d'} is an anti-isomorphism between (L_{τd}, ≤) and (L_d, ≤)

Alexandroff T_D derivative operators

Given an Alexandroff T_D derivative operator d on X

Int L^A_d be the set of all Alexandroff *T_D* derivative operators *d'* on *X* such that *d'* ≤ *d*

Remark that

- the least element of L_d^A is the derivative operator d_{\emptyset}
- the greatest element of L_d^A is d
- ► we do not know any representation of the least upper bound and the greatest lower bound of a family {d'_i: i ∈ I} in L^A_d
- (L_d^A, \leq) is a complete lattice

Alexandroff *T_D* derivative operators and strict partial orders Strict partial orders

A strict partial order on X is a binary relation R on X such that

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- ▶ for all $x \in X$, $x \notin R(x)$
- ▶ for all $x \in X$, $R(R(x)) \subseteq R(x)$

We shall say that $A \subseteq X$ is

• **R-closed** iff $R^{-1}(A) \subseteq A$

Strict partial orders

Let \leq be the binary relation between strict partial orders on X such that

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

►
$$R \le R'$$
 iff $R \subseteq R'$

Strict partial orders

Given a strict partial order R on X

► let L_R be the set of all strict partial orders R' on X such that R' ≤ R

Remark that

- the least element of L_R is the strict partial order \emptyset
- the greatest element of L_R is R
- ► the least upper bound of a family {R_i': i ∈ I} in L_R is the transitive closure of U{R_i': i ∈ I}
- ▶ the greatest lower bound of a family $\{R'_i: i \in I\}$ in L_R is $\bigcap\{R'_i: i \in I\}$

• (L_R, \leq) is a complete lattice

Alexandroff T_D derivative operators v. strict partial orders

Given an Alexandroff T_D derivative operator d on X

► let R_d be the binary relation on X such that for all x, y ∈ X, x R_d y iff x ∈ d({y})

(日) (日) (日) (日) (日) (日) (日)

Remark that

- R_d is a strict partial order on X
- ▶ for all $A \subseteq X$, A is R_d -closed iff A is d-closed
- $R_d \leq R_{d'}$ iff $d \leq d'$

Alexandroff T_D derivative operators v. strict partial orders

Given a strict partial order R on X

▶ let $\mathbf{d}_{\mathbf{R}}$ be the function d_{R} : $\mathcal{P}(X) \rightarrow \mathcal{P}(X)$ such that for all $A \subseteq X$, $d_{R}(A) = R^{-1}(A)$

Remark that

- d_R is an Alexandroff T_D derivative operator on X
- ▶ for all $A \subseteq X$, A is d_R -closed iff A is R-closed
- $d_R \leq d_{R'}$ iff $R \leq R'$

Alexandroff T_D derivative operators v. strict partial orders

Let us further remark that

$$d_{R_d} = d R_{d_R} = R$$

Given an Alexandroff T_D derivative operator d on X

► the function $f: L_d^A \to L_{R_d}$ such that $f(d') = R_{d'}$ is an isomorphism between (L_{R_d}, \leq) and (L_d^A, \leq)

Given a strict partial order R on X

► the function f: L_R → L^A_{d_R} such that f(R') = d_{R'} is an isomorphism between (L^A_{d_R}, ≤) and (L_R, ≤)

Cantor-Bendixson ranks of Alexandroff T_D derivative operators

Given an Alexandroff T_D derivative operator d on X

▶ let θ_d be the function θ_d : $L_d \to L_d$ such that for all $d' \in L_d$, $\theta_d(d') = d \circ d'$

Clearly

- θ_d is monotonic
- θ_d has a least fixpoint $lfp(\theta_d)$ and a greatest fixpoint $gfp(\theta_d)$

(日) (日) (日) (日) (日) (日) (日)

- Ifp $(\theta_d) = d_{\emptyset}$
- gfp(θ_d) is the least upper bound of the family {d': d' ≤ θ_d(d')} in L_d

Cantor-Bendixson ranks of Alexandroff T_D derivative operators

For all ordinals α , we inductively define $\theta_d \downarrow \alpha$ as follows

- θ_d↓0 is d
- ▶ for all successor ordinals α , $\theta_d \downarrow \alpha$ is $\theta_d(\theta_d \downarrow (\alpha 1))$
- for all limit ordinals α, θ_d↓α is the greatest lower bound of the family {θ_d↓β: β ∈ α} in L_d

(日) (日) (日) (日) (日) (日) (日)

There exists an ordinal α such that

$$\bullet \ \theta_d \downarrow \alpha = \mathsf{gfp}(\theta_d)$$

Cantor-Bendixson ranks of Alexandroff T_D derivative operators

The least ordinal α such that

 $\bullet \ \theta_d \! \downarrow \! \alpha = \mathsf{gfp}(\theta_d)$

is called the Cantor-Bendixson rank of d

Example

- ► *X* = ℤ
- $d_{\mathbb{Z}}(A) = \{x: \text{ there exists } y \in A \text{ such that } x <_{\mathbb{Z}} y\}$

(日) (日) (日) (日) (日) (日) (日)

obviously

 $\blacktriangleright \ \theta_{\mathbf{d}_{\mathbb{Z}}}(\theta_{\mathbf{d}_{\mathbb{Z}}}{\downarrow}\omega) = \theta_{\mathbf{d}_{\mathbb{Z}}}{\downarrow}\omega$

• the Cantor-Bendixson rank of $d_{\mathbb{Z}}$ is ω

Cantor-Bendixson ranks of strict partial orders

Given a strict partial order R on X

▶ let $\theta_{\mathbf{R}}$ be the function θ_R : $L_R \to L_R$ such that for all $R' \in L_R$, $\theta_R(R') = R \circ R'$

Clearly

- θ_R is monotonic
- θ_R has a least fixpoint lfp(θ_R) and a greatest fixpoint gfp(θ_R)
- Ifp $(\theta_R) = \emptyset$
- gfp(θ_R) is the least upper bound of the family {R': R' ≤ θ_R(R')} in L_R

Cantor-Bendixson ranks of strict partial orders

For all ordinals α , we inductively define $\theta_{\mathbf{R}} \downarrow \alpha$ as follows

- θ_R↓0 is R
- ▶ for all successor ordinals α , $\theta_R \downarrow \alpha$ is $\theta_R(\theta_R \downarrow (\alpha 1))$
- for all limit ordinals α, θ_R↓α is the greatest lower bound of the family {θ_R↓β: β ∈ α} in L_R

(日) (日) (日) (日) (日) (日) (日)

There exists an ordinal α such that

$$\bullet \ \theta_R \downarrow \alpha = \mathsf{gfp}(\theta_R)$$

Cantor-Bendixson ranks of strict partial orders

The least ordinal α such that

 $\bullet \ \theta_{\mathsf{R}} \downarrow \alpha = \mathsf{gfp}(\theta_{\mathsf{R}})$

is called the Cantor-Bendixson rank of R

Example

- $\blacktriangleright X = \mathbb{Q}$
- ► $x \ R_{\mathbb{Q}} \ y$ iff $x <_{\mathbb{Q}} y$
- obviously
 - $\bullet \ \theta_{R_{\mathbb{Q}}}(\theta_{R_{\mathbb{Q}}} \downarrow \mathbf{0}) = \theta_{R_{\mathbb{Q}}} \downarrow \mathbf{0}$
- the Cantor-Bendixson rank of $R_{\mathbb{Q}}$ is 0

(日) (日) (日) (日) (日) (日) (日)

Alexandroff T_D derivative operators v. strict partial orders

Let *d* be an Alexandroff T_D derivative operator on *X* and *R* be a strict partial order on *X* such that

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▶ for all $x, y \in X$, $x \mathrel{R} y$ iff $x \in d(\{y\})$

• for all
$$A \subseteq X$$
, $d(A) = R^{-1}(A)$

One can prove by induction on the ordinal α that

- ▶ for all $x, y \in X$, $x \theta_R \downarrow \alpha y$ iff $x \in \theta_d \downarrow \alpha(\{y\})$
- ▶ for all $A \subseteq X$, $\theta_d \downarrow \alpha(A) \supseteq \theta_R \downarrow \alpha^{-1}(A)$

Alexandroff T_D derivative operators v. strict partial orders

Let

- \(\alpha_d\) be be the Cantor-Bendixson rank of d
- $\alpha_{\mathbf{R}}$ be the Cantor-Bendixson rank of R

The above considerations prove that

▶ for all $x, y \in X$, $x \theta_R \downarrow \alpha y$ iff $x \in \theta_d \downarrow \alpha(\{y\})$

(日) (日) (日) (日) (日) (日) (日)

▶ for all $A \subseteq X$, $\theta_d \downarrow \alpha(A) \supseteq \theta_R \downarrow \alpha^{-1}(A)$

Alexandroff T_D derivative operators v. strict partial orders

Example

A modal logic Syntax

Formulas are defined as follows

 $\blacktriangleright \phi ::= p \mid \perp \mid \neg \phi \mid (\phi \lor \psi) \mid \Box \phi \mid \Box^{\star} \phi$

Abbreviations

Standard definitions for the remaining Boolean operations

▲□▶▲□▶▲□▶▲□▶ □ のQ@

$$\blacktriangleright \Diamond \phi ::= \neg \Box \neg \phi$$

$$\blacktriangleright \Diamond^* \phi ::= \neg \Box^* \neg \phi$$

A modal logic

Relational semantics

A relational frame is a structure of the form $\mathcal{F} = (X, R, S)$ such that

- X is a nonempty set
- R is a strict partial order on X
- S is the greatest fixpoint of the function θ_R in L_R

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Lemma: if $\mathcal{F} = (X, R, S)$ is a relational frame, then

- 1. $R \circ R \leq R$
- **2**. $S \circ S \leq S$
- **3.** $S \leq R$
- 4. $R \circ S \leq S$
- 5. $S \circ R \leq S$
- $6. S \leq R \circ S$

A modal logic Relational semantics

A relational model is a structure of the form $\mathcal{M} = (X, R, S, V)$ such that

- (X, R, S) is a relational frame
- V is a valuation on X

Satisfiability

- $\mathcal{M}, x \models p \text{ iff } x \in V(p)$
- $\mathcal{M}, x \not\models \bot$
- $\blacktriangleright \mathcal{M}, \mathbf{x} \models \neg \phi \text{ iff } \mathcal{M}, \mathbf{x} \not\models \phi$
- $\mathcal{M}, \mathbf{x} \models \phi \lor \psi$ iff either $\mathcal{M}, \mathbf{x} \models \phi$, or $\mathcal{M}, \mathbf{x} \models \psi$
- $\mathcal{M}, x \models \Box \phi$ iff for all $y \in X$, if $x \mathrel{R} y$, then $\mathcal{M}, y \models \phi$
- $\mathcal{M}, x \models \Box^* \phi$ iff for all $y \in X$, if $x \ S \ y$, then $\mathcal{M}, y \models \phi$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A modal logic Relational semantics

Lemma: if $\mathcal{F} = (X, R, S)$ is a relational frame, then 1. $\mathcal{F} \models \Box \phi \rightarrow \Box \Box \phi$ 2. $\mathcal{F} \models \Box^* \phi \rightarrow \Box^* \Box^* \phi$ 3. $\mathcal{F} \models \Box \phi \rightarrow \Box^* \phi$ 4. $\mathcal{F} \models \Box^* \phi \rightarrow \Box^* \phi$ 5. $\mathcal{F} \models \Box^* \phi \rightarrow \Box^* \Box \phi$ 6. $\mathcal{F} \models \Box^* \phi \rightarrow \Box^* \phi$

・ロト・日本・日本・日本・日本

A modal logic

Topological semantics

A **topological frame** is a structure of the form $\mathcal{F} = (X, d, e)$ such that

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- X is a nonempty set
- d is an Alexandroff T_D derivative operator on X
- *e* is the greatest fixpoint of the function θ_d in L_d

Lemma: if $\mathcal{F} = (X, d, e)$ is a topological frame, then

- 1. $d \circ d \leq d$
- **2**. *e* ∘ *e* ≤ *e*
- **3**. *e* ≤ *d*
- 4. $d \circ e \leq e$
- 5. $e \circ d \leq e$
- 6. $e \leq d \circ e$

A modal logic

Topological semantics

A **topological model** is a structure of the form $\mathcal{M} = (X, d, e, V)$ such that

- (X, d, e) is a topological frame
- V is a valuation on X

Interpretation

$$\blacktriangleright \| p \|_{\mathcal{M}} = V(p)$$

$$\blacktriangleright \parallel \perp \parallel_{\mathcal{M}} = \emptyset$$

$$\bullet \parallel \neg \phi \parallel_{\mathcal{M}} = X \setminus \parallel \phi \parallel_{\mathcal{M}}$$

$$\blacktriangleright \parallel \phi \lor \psi \parallel_{\mathcal{M}} = \parallel \phi \parallel_{\mathcal{M}} \cup \parallel \psi \parallel_{\mathcal{M}}$$

$$\blacktriangleright \parallel \Box \phi \parallel_{\mathcal{M}} = X \setminus d(X \setminus \parallel \phi \parallel_{\mathcal{M}})$$

$$\blacktriangleright \parallel \Box^* \phi \parallel_{\mathcal{M}} = X \setminus e(X \setminus \parallel \phi \parallel_{\mathcal{M}})$$

A modal logic Topological semantics

Lemma: if $\mathcal{F} = (X, d, e)$ is a topological frame, then 1. $\mathcal{F} \models \Box \phi \rightarrow \Box \Box \phi$ 2. $\mathcal{F} \models \Box^* \phi \rightarrow \Box^* \Box^* \phi$ 3. $\mathcal{F} \models \Box \phi \rightarrow \Box^* \phi$ 4. $\mathcal{F} \models \Box^* \phi \rightarrow \Box \Box^* \phi$ 5. $\mathcal{F} \models \Box^* \phi \rightarrow \Box^* \Box \phi$ 6. $\mathcal{F} \models \Box \Box^* \phi \rightarrow \Box^* \phi$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Axiomatization

Let L be the least normal logic in our language containing

1. $\Box \phi \rightarrow \Box \Box \phi$ 2. $\Box^* \phi \rightarrow \Box^* \Box^* \phi$ 3. $\Box \phi \rightarrow \Box^* \phi$ 4. $\Box^* \phi \rightarrow \Box \Box^* \phi$ 5. $\Box^* \phi \rightarrow \Box^* \Box \phi$ 6. $\Box \Box^* \phi \rightarrow \Box^* \phi$

Proposition (Soundness)

- if $\phi \in L$, then ϕ is valid in all relational frames
- if $\phi \in L$, then ϕ is valid in all topological frames

Axiomatization

Proposition (Completeness)

▶ if ϕ is valid in all relational frames, then $\phi \in L$

Example

• if
$$\phi = \Box(p \to \Diamond p) \to (\Diamond p \to \Diamond^* p)$$
, then

- ϕ is valid in all topological frames
- ϕ is not valid in all relational frames

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Axiomatization

A set Γ of formulas is said to be an L-theory iff

- Γ contains L
- Γ is closed under the rule of modus ponens

We shall say that an L-theory F

- is consistent iff ⊥ ∉ Γ
- ► is **maximal** iff for all formulas ϕ , either $\phi \in \Gamma$, or $\neg \phi \in \Gamma$

Given an L-theory Γ and a formula ϕ

$$\blacktriangleright \ \Gamma + \phi = \{ \psi \colon \phi \to \psi \in \Gamma \}$$

$$\blacktriangleright \Box \Gamma = \{\phi \colon \Box \phi \in \Gamma\}$$

 $\blacktriangleright \ \Box^* \Gamma = \{ \phi \colon \Box^* \phi \in \Gamma \}$

Axiomatization

Lemma

- 1. $\Gamma + \phi$ is the least *L*-theory containing Γ and ϕ
- **2**. $\Gamma + \phi$ is consistent iff $\neg \phi \notin \Gamma$
- 3. $\Box \Gamma$ is an *L*-theory
- 4. $\Box^*\Gamma$ is an *L*-theory

Lemma (Lindenbaum's Lemma)

If Γ is a consistent *L*-theory, then there exists a maximal consistent *L*-theory Δ such that Γ ⊆ Δ

Axiomatization

Lemma (Existence Lemma)

- if Γ is a maximal consistent *L*-theory such that □φ ∉ Γ, then there exists a maximal consistent *L*-theory Δ such that □Γ ⊆ Δ and φ ∉ Δ
- if Γ is a maximal consistent *L*-theory such that □*φ ∉ Γ, then there exists a maximal consistent *L*-theory Δ such that □*Γ ⊆ Δ and φ ∉ Δ

Lemma

if □*Γ ⊆ Δ then there exists a maximal consistent *L*-theory
 Λ such that □Γ ⊆ Λ and □*Λ ⊆ Δ

Axiomatization

A subordination structure is a structure of the form $S = (X, R, S, \mu)$ such that

- X is a finite nonempty set
- R and S are strict partial orders on X
- S ⊆ R
- $\blacktriangleright R \circ S \subseteq S$
- $\blacktriangleright S \circ R \subseteq S$
- µ is an interpretation on X, i.e. µ associates a maximal consistent L-theory µ(x) to any x ∈ X

Proposition

If φ is true in the class of all subordination structures of cardinality 1 then φ ∈ L

Axiomatization

Given a subordination structure $S = (X, R, S, \mu)$, it may contain imperfections

□-imperfections: triples of the form (x, \Box, ϕ) where $x \in X$ is such that

► $\Box \phi \notin \mu(\mathbf{X})$

▶ for all $y \in X$, if x R y, then $\phi \in \mu(y)$

□*-imperfections: triples of the form (x, \square^*, ϕ) where $x \in X$ is such that

□*φ ∉ μ(x)
 for all y ∈ X, if x S y, then φ ∈ μ(y)

imperfections of density pairs of the form (x, y) where $x, y \in X$ are such that

- ▶ x S y
- ► for all $z \in X$, either not x R z, or not z S y

Repairing imperfections

Lemma: Given a \Box -imperfection (x, \Box, ϕ) in a subordination structure S

► there exists a subordination structure S' such that S' contains S and (x, □, φ) is not a □-imperfection in S'

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Proof

Repairing imperfections

Lemma: Given a \Box -imperfection (x, \Box, ϕ) in a subordination structure S

► there exists a subordination structure S' such that S' contains S and (x, □, φ) is not a □-imperfection in S'

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Proof
$$\mathcal{S} = (X, R, S, \mu)$$

 $x \bullet \Box \phi \notin \mu(x)$

Repairing imperfections

Lemma: Given a \Box -imperfection (x, \Box, ϕ) in a subordination structure S

► there exists a subordination structure S' such that S' contains S and (x, □, φ) is not a □-imperfection in S'

Proof

$$S = (X, R, S, \mu)$$

 $x \qquad \Box \phi \notin \mu(x)$
 R'
 $y' \qquad \Box \mu(x) \cup \{\neg \phi\} \subseteq \mu'(y')$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Repairing imperfections

Lemma: Given a \Box^* -imperfection (x, \Box^*, ϕ) in a subordination structure S

► there exists a subordination structure S' such that S' contains S and (x, □*, φ) is not a □*-imperfection in S'

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Proof

Repairing imperfections

Lemma: Given a \Box^* -imperfection (x, \Box^*, ϕ) in a subordination structure S

► there exists a subordination structure S' such that S' contains S and (x, □*, φ) is not a □*-imperfection in S'

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Proof
$$\mathcal{S} = (X, R, S, \mu)$$

 $x \quad \Box^{\star} \phi \notin \mu(x)$

Repairing imperfections

Lemma: Given a \Box^* -imperfection (x, \Box^*, ϕ) in a subordination structure S

► there exists a subordination structure S' such that S' contains S and (x, □*, φ) is not a □*-imperfection in S'

Proof

$$S = (X, R, S, \mu)$$

 x
 $T' \phi \notin \mu(x)$
 R', S'
 y'
 $T' \mu(x) \cup \{\neg \phi\} \subseteq \mu'(y')$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Repairing imperfections

Lemma: Given an imperfection of density (x, y) in a subordination structure S

► there exists a subordination structure S' such that S' contains S and (x, y) is not an imperfection of density in S'

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Proof

Repairing imperfections

Lemma: Given an imperfection of density (x, y) in a subordination structure S

► there exists a subordination structure S' such that S' contains S and (x, y) is not an imperfection of density in S'

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Proof
$$S = (X, R, S, \mu) \begin{pmatrix} x \\ S \\ y \end{pmatrix}$$

Repairing imperfections

Lemma: Given an imperfection of density (x, y) in a subordination structure S

► there exists a subordination structure S' such that S' contains S and (x, y) is not an imperfection of density in S'

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Proof

$$\mathcal{S} = (X, R, S, \mu)$$
 X
 R'
 Z'
 S'
 Z'

Completeness

Theorem: The following conditions are equivalent

- **1**. *φ* ∈ *L*
- 2. ϕ is valid in the class of all relational frames
- 3. ϕ is true in the class of all subordination structures of cardinality 1

(ロ) (同) (三) (三) (三) (○) (○)

Proposition

► □* is not definable in the ordinary language of modal logic with respect to L

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Definability Modal definability

Proof:

- assume there exists a formula *φ* in the ordinary language of modal logic defining □* with respect to *L*
- 2. let $\mathcal{M} = (\mathbb{Z}, <_{\mathbb{Z}}, \emptyset, V)$ and $\mathcal{M}' = (\mathbb{Q}, <_{\mathbb{Q}}, <_{\mathbb{Q}}, V')$ with $V(q) = \emptyset$ and $V'(q) = \emptyset$ for all Boolean variables q
- remark that for all formulas ψ in the ordinary language of modal logic, for all x ∈ Z and for all x' ∈ Q, M, x ⊨ ψ iff M', x' ⊨ ψ
- **4**. hence, $\mathcal{M}, \mathbf{0} \models \phi$ iff $\mathcal{M}', \mathbf{0} \models \phi$
- 5. remark that $\mathcal{M}, \mathbf{0} \models \Box^* p$ and $\mathcal{M}', \mathbf{0} \not\models \Box^* p$
- 6. since ϕ defines \Box^* with respect to *L*, $\mathcal{M}, \mathbf{0} \models \phi$ and $\mathcal{M}', \mathbf{0} \not\models \phi$: a contradiction

Proposition

the class of all relational frames is not first-order definable

Definability

First-order definability

Proof:

- 1. assume there exists a first-order sentence ϕ defining the class of all relational frames
- 2. for all $n \in \mathbb{N}$, let $\mathcal{F}_n = (X_n, R_n, S_n)$ be the relational frame defined by $X_n = \{0, \ldots, n\}$, $R_n = \langle X_n \rangle$ and $S_n = \emptyset$

3. obviously, for all $n \in \mathbb{N}$

1. $\mathcal{F}_n \models \phi$ 2. $\mathcal{F}_n \models \exists y \ \forall x \ (R(x, y) \lor x \equiv y)$ 3. $\mathcal{F}_n \models \forall x \ \forall y \neg S(x, y)$

Definability

First-order definability

- 4. let *U* be an ultrafilter over \mathbb{N} and $\mathcal{F}_U = (X_U, R_U, S_U)$ be the ultraproduct of the family $\{\mathcal{F}_n: n \in \mathbb{N}\}$ modulo *U*
- 5. by 3

1.
$$\mathcal{F}_U \models \phi$$

2. $\mathcal{F}_U \models \exists y \forall x (R(x, y) \lor x \equiv y)$
3. $\mathcal{F}_U \models \forall x \forall y \neg S(x, y)$

- 6. for all $i \in \mathbb{N}$, let [*i*] be the class of (i, i, ...) modulo U
- 7. remark that for all $i, j \in \mathbb{N}$, [*i*] R_U [*j*] iff i < j
- 8. by 5.2, there exists $M_U \in X_U$ such that for all $i \in \mathbb{N}$, either [*i*] $R_U M_U$, or [*i*] = M_U
- 9. by 7, for all $i \in \mathbb{N}$, $[i] R_U M_U$

Definability

First-order definability

- 10. let R'_U be the binary relation on X_U such that for all $x, y \in X_U, x R'_U y$ iff there exists $i \in \mathbb{N}$ such that x = [i] and $y = M_U$
- 11. remark that R'_U is a strict partial order on X_U , $R'_U \subseteq R_U$ and $R'_U \neq \emptyset$

(日) (日) (日) (日) (日) (日) (日)

- 12. claim: $R'_U \leq \theta_{R_U}(R'_U)$
- 13. hence, $R'_U \leq \text{gfp}(\theta_{R_U})$
- 14. by 5.1 and 5.3, $gfp(\theta_{R_U}) = \emptyset$
- 15. by 13, $R'_U = \emptyset$: a contradiction

Notes

Open problems:

- 1. Philosophical interpretation of \Box^* in terms of beliefs ?
- 2. What is the logic of \Box^* alone ? K4 ?
- 3. Finite model property of L?
- 4. Decidability/complexity of the membership problem in L?
- 5. Modal definability of the class of all relational frames ?
- 6. Generalization to other monotonic functions $\theta_R: L_R \to L_R$

(日) (日) (日) (日) (日) (日) (日)

Bibliography

- Van Benthem, J., Bezhanishvili, G.: Modal logics of space. In Aiello, M., Pratt-Hartmann, I., van Benthem, J. (Editeurs) : Handbook of Spatial Logics. Springer (2007) 217–298.
- Bezhanishvili, G., Esakia, L., Gabelaia, D.: Some results on modal axiomatization and definability for topological spaces. Studia Logica 81 (2005) 325–355.
- Parikh, R., Moss, L., Steinsvold, C.: Topology and epistemic logic. In Aiello, M., Pratt-Hartmann, I., van Benthem, J. (Editeurs) : Handbook of Spatial Logics. Springer (2007) 299–341.
- Shehtman, V.: Derived sets in Euclidean spaces and modal logic. ITLI Prepublication Series X-90-05 (1990).