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Introduction

Given a topology 7 on a nonempty set X
» the 7-derived set d,(A) of a set A C X of points

the set of all limit points of A with respect to 7

The derivative operator d; possesses interesting properties
» aset A C X of points is 7-closed
iff
d-(A)CA

What happens if we iterate the derivative operator d;
» considering the sequence d., d- o d,, ... of operators



Introduction

If 7is Tp, then
» each element d of this sequence is a derivative operator

A question arises

» what is the link between the topologies 7, corresponding to
the elements d¢ of the sequence

The answer is simple
» the topologies 7, are getting finer when « increases



Introduction

The lattice of all T topologies on X is complete
» this iteration process should stop

The Cantor-Bendixson rank of (X, 7) is defined as
» the least ordinal « such that d(d(X)) = d%(X)

A consequence of Tarski’s fixpoint theorem is that

» there exists an ordinal o* such that o < o* and
dT ° d,[?‘* _ dg*



Introduction

Any strict partial order R on X defines a function 6z which

» associates to each strict partial order S C R on X the strict
partial order 0g(S) = Ro Son X

What happens if we iterate the function 65
» considering the sequence R, 6g(R), ... of partial orders

Simply
» the partial orders 0%(R) are getting smaller when o
increases



Introduction

The lattice of all strict partial orders on X is complete
» this iteration process should stop

There exists an ordinal o* such that
> 0r(0% (R)) = 0% (R)

If R is the strict partial order on X corresponding to a given
Alexandroff Tp derivative operator d, then

» 0% (R) is a strict partial order on X corresponding to the
derivative operator d®” considered above
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Topologies and derivative operators

Topologies

A topology on X is a set 7 of subsets of X such that
» Qe
» Xer
» ifA,Ber,thenAnBer

» if (A;); is a collection of subsets of X such that A; € T for
every i, then | J;A; e 1

We shall say that
» AC Xis t-closed iff X\ Ae



Topologies and derivative operators

Topologies

7 is said to be Tp iff
» for all x € X, there exists A, B € 7 such that A\ B = {x}

We shall say that 7 is Alexandroff iff
» each intersection of members of risin T



Topologies and derivative operators

Topologies

Let < be the binary relation between topologies on X such that

» T < 7iff r C 7/

Remark that for all topologies 7,7’ on X
» if 7 <7/, thenif ris Tp,then 7’ is Tp

Example: the Sierpinski space
> X=1{xy}
> T = {@,{X},X}



Topologies and derivative operators

Topologies

Given a topology 7 on X
» let L, be the set of all topologies 7’ on X such that 7 < 7/

Remark that
» the least element of L, is 7
» the greatest element of L, is the topology P(X)

» the least upper bound of a family {7/: i € I} in L, is the
intersection of all 7/ € L, such that (J{r}: ie I} C 7

» the greatest lower bound of a family {r/: i € I} in L, is
N{rj:iel}

» (L, <) is a complete lattice



Topologies and derivative operators

Derivative operators

A derivative operator on X is a function d: P(X) — P(X)
such that

» d(0)=10

» forall A,BC X, d(AuU B) =d(A)ud(B)
» forall AC X, d(d(A)) Cd(A)UA

» forall x € X, x & d({x})

A C X is said to be
» d-closed iff d(A) C A



Topologies and derivative operators

Derivative operators

We shall say that d is Tp iff
» forall AC X, d(d(A)) C d(A)

d is said to be Alexandroff iff

» for all x € X, there exists a greatest A C X such that A is
d-closed and x ¢ A



Topologies and derivative operators

Derivative operators

Let < be the binary relation between derivative operators on X
such that

> d < d'iffforall AC X, d(A) C d'(A)

Remark that for all derivative operators d, d’ on X
» if d < d,thenifd is Tp,then dis Tp

Example
> X={x,y}
d)y==0
d({x}) = {y}
d({y}) =
d(X) = {y}

vV v v VY



Topologies and derivative operators

Derivative operators

Given a derivative operator d on X

» let Lq be the set of all derivative operators d’ on X such
thatd’ < d

Remark that

» the least element of Ly is the derivative operator aj:
P(X) — P(X) such that for all A C X, dy(A) =0

» the greatest element of Ly is d

» we do not know any representation of the least upper
bound and the greatest lower bound of a family {d}: i € I}
in Ly

> (Lg4, <) is a complete lattice



Topologies and derivative operators

Topologies v. derivative operators

Given a topology 7 on X

» let d be the function d;: P(X) — P(X) such that for all A
C X, d;(A) = {x: x is a 7-limit point of A}

Remark that
» d. is a derivative operator on X
forall AC X, Ais d.-closed iff Ais T-closed
d.is Tpiff rid Tp
d- is Alexandroff iff 7 is Alexandroff

»
>
>
> dy < d iffr <t



Topologies and derivative operators

Topologies v. derivative operators

Given a derivative operator d on X
» let 74 be the set of d-open subsets of X

Remark that

T4 is a topology on X

forall AC X, Ais 74-closed iff Ais d-closed
Tqis Tpiff did Tp

74 IS Alexandroff iff d is Alexandroff

T < Tgiffd < d

v

vV v v VY



Topologies and derivative operators

Topologies v. derivative operators

Let us further remark that
> Tq. =T

> d, =d

Given a topology 7 on X

» the function f: L, — Ly_such that f(7) = d,» is an
anti-isomorphism between (Ly, , <) and (L;, <)

Given a derivative operator d on X

» the function f: Ly — L., such that f(d") = 74 is an
anti-isomorphism between (L., <) and (Lg, <)



Alexandroff Tp derivative operators and strict partial

orders
Alexandroff Tp derivative operators

Given an Alexandroff Tp derivative operator d on X

> let LQ be the set of all Alexandroff Ty derivative operators
d on X such that d’ < d

Remark that
> the least element of L4 is the derivative operator d
» the greatest element of L4 is d

» we do not know any representation of the least upper

bound and the greatest lower bound of a family {d}: i € I}
in L

> (L4, <) is a complete lattice



Alexandroff Tp derivative operators and strict partial
orders

Strict partial orders

A strict partial order on X is a binary relation R on X such
that

» forall x € X, x ¢ R(x)
» forall x € X, R(R(x)) C R(x)

We shall say that AC X'is
» R-closed iff R~'(A) C A



Alexandroff Tp derivative operators and strict partial
orders

Strict partial orders

Let < be the binary relation between strict partial orders on X
such that

» R<RIifRCR



Alexandroff Tp derivative operators and strict partial
orders

Strict partial orders

Given a strict partial order R on X

» let Lgr be the set of all strict partial orders R’ on X such
that R < R

Remark that
» the least element of Lg is the strict partial order ()
» the greatest element of Lg is R

» the least upper bound of a family {R;: i € I} in L is the
transitive closure of | J{R}: i € I}

» the greatest lower bound of a family {R}: i € I} in Lgis
({Ri:iel}

» (Lg, <) is a complete lattice



Alexandroff Tp derivative operators and strict partial
orders

Alexandroff Tp derivative operators v. strict partial orders

Given an Alexandroff Tp derivative operator d on X

» let R4 be the binary relation on X such that for all x, y € X,
x Ry yiff x e d({y})

Remark that
» Ry is a strict partial order on X
» forall AC X, Ais Ry-closed iff Ais d-closed
» Ry < Ry iffd <d'



Alexandroff Tp derivative operators and strict partial
orders

Alexandroff Tp derivative operators v. strict partial orders

Given a strict partial order R on X

» let dg be the function dg: P(X) — P(X) such that for all A
C X, dr(A) = R7'(A)

Remark that
» dg is an Alexandroff Tp derivative operator on X
» forall AC X, Ais dr-closed iff Ais R-closed
» dp < dp iff R< R



Alexandroff Tp derivative operators and strict partial
orders

Alexandroff Tp derivative operators v. strict partial orders

Let us further remark that
> dg, =d
> Rd,q =R

Given an Alexandroff Tp derivative operator d on X

» the function f: L — Lg, such that f(d") = Ry is an
isomorphism between (Lg,, <) and (L, <)

Given a strict partial order R on X
> the function f: Lg — Lj_such that f(R') = dg is an
isomorphism between (L, <) and (Lg, <)



Cantor-Bendixson ranks

Cantor-Bendixson ranks of Alexandroff Tp derivative operators

Given an Alexandroff Tp derivative operator d on X

» let 04 be the function ,: Ly — Ly such that for all o’ € Ly,
Og(d')=dod

Clearly
> 04 is monotonic
» 04 has a least fixpoint Ifp(64) and a greatest fixpoint gfp(64)
> Ifp(6q) = dy
» gfp(6y) is the least upper bound of the family {d": d’ <
0q(d")} in Ly



Cantor-Bendixson ranks

Cantor-Bendixson ranks of Alexandroff Tp derivative operators

For all ordinals «, we inductively define 4]« as follows
> 0410 is d
» for all successor ordinals «, 04| is 04(0gl(a — 1))

» for all limit ordinals «, 64|« is the greatest lower bound of
the family {0415: B € a}in Ly

There exists an ordinal a such that
> Ogla = gfp(fy)



Cantor-Bendixson ranks

Cantor-Bendixson ranks of Alexandroff Tp derivative operators

The least ordinal o such that

> Oqla = gfp(y)
is called the Cantor-Bendixson rank of d

Example
>» X =7
» dz(A) = {x: there exists y € Asuch that x <z y}
» obviously
> O, (0g, lw) = O, |w
» the Cantor-Bendixson rank of dz is w



Cantor-Bendixson ranks

Cantor-Bendixson ranks of strict partial orders

Given a strict partial order R on X

» let Ogr be the function 05: Ls — Lg such thatfor all R’ € Lg,
0r(R)Y=Ro R

Clearly
» O is monotonic
» 0g has a least fixpoint Ifp(fz) and a greatest fixpoint
9fp(6r)
> |fp(9,q) =0
» gfp(6R) is the least upper bound of the family {R": R’ <
0r(R)}in L



Cantor-Bendixson ranks

Cantor-Bendixson ranks of strict partial orders

For all ordinals «, we inductively define 6g |« as follows
» Ogl0is R
» for all successor ordinals «, Og|ais Og(0rl(a — 1))

» for all limit ordinals «, fg|« is the greatest lower bound of
the family {6g|3: B € a}in Lg

There exists an ordinal a such that
> Opla = gfp(dR)



Cantor-Bendixson ranks

Cantor-Bendixson ranks of strict partial orders

The least ordinal a such that

> Ogla = gfp(R)
is called the Cantor-Bendixson rank of R

Example
» X=Q
» Xx Rgyiffx <qy
» obviously
> 0Ry(0R,10) = 0r, 10
» the Cantor-Bendixson rank of Rg is 0



Cantor-Bendixson ranks

Alexandroff Tp derivative operators v. strict partial orders

Let d be an Alexandroff Tp derivative operator on X and R be a
strict partial order on X such that

» forallx,y € X, x Ryiff x € d({y})
» forall AC X, d(A) = R7'(A)

One can prove by induction on the ordinal « that
» forall x,y € X, x Ogla y iff x € Ogla({y})
» forall A C X, 04la(A) 2 0gla=1(A)



Cantor-Bendixson ranks

Alexandroff Tp derivative operators v. strict partial orders

Let
» «aq be be the Cantor-Bendixson rank of d
» ap be the Cantor-Bendixson rank of R

The above considerations prove that
» forall x,y € X, x Ogla y iff x € Ogla({y})
» forall AC X, Ogla(A) D Ogla"(A)



Cantor-Bendixson ranks

Alexandroff Tp derivative operators v. strict partial orders

Example




A modal logic
Syntax

Formulas are defined as follows

> ou=p|L-¢[(¢Vvy)| 0o |0

Abbreviations
» Standard definitions for the remaining Boolean operations
> O¢ = ¢
> <>*<;5 = —|D*—|¢



A modal logic

Relational semantics

A relational frame is a structure of the form 7 = (X, R, S)
such that

» X is a nonempty set
» R is a strict partial order on X
» S is the greatest fixpoint of the function 6z in Lg

Lemma: if 7 = (X, R, S) is a relational frame, then
1. RoR<R

2. S0S8S< S

S<R

RoS<S

SoR<S

S<RoS

o ok~ w



A modal logic

Relational semantics

A relational model is a structure of the form M = (X, R, S, V)
such that

» (X, R,S) is arelational frame
» Vs a valuation on X

Satisfiability
» M, x = piff x € V(p)
> M, x B~ L
> M, x = ¢ iff M, x £ ¢
> M, x = ¢V iff either M, x = ¢, or M, x =19
» M,x EQg¢iffforally e X,if x Ry,then M,y = ¢
» M,x EO*¢iffforally € X,if x Sy, then M,y E ¢



A modal logic

Relational semantics

Lemma: if 7 = (X, R, S) is a relational frame, then
1. F=0O¢ — O0¢
2. FEOW— OO

FE=Op — O

FEO¢Y—0O0%

F = 0% — O00¢

FEO*¢ — 0%

o ok~ w



A modal logic

Topological semantics

A topological frame is a structure of the form F = (X, d, e)
such that

» X is a nonempty set
» dis an Alexandroff Tp derivative operator on X
» ¢ is the greatest fixpoint of the function 64 in Ly

Lemma: if 7 = (X, d, e) is a topological frame, then
1. dod <d
2. eoe<e
e<d
doe<e
eod<e
e<doe

o ok~ w



A modal logic

Topological semantics

A topological model is a structure of the form M =
(X,d, e, V) such that

» (X, d, e) is atopological frame
» Vs a valuation on X

Interpretation
> |l pllm = V(p)
> [ Lfm=0

> =9 lv = X\ [ & [l

> oV llm=1¢llamUll ¢l
> [[0¢ v = X\ d(X\ [ 6 [[a1)

> [T [a = X\ e(X\ [ & [lm)



A modal logic

Topological semantics

Lemma: if 7 = (X, d, e) is a topological frame, then
1. F=0O¢ — O0¢
2. FEOW— D0

FE=EDOp — O

FEO¢Y—0O0%

F =% ¢ — O0¢

Fl=O0%¢ — O

o ok~ w



Axiomatization and completeness

Axiomatization

Let L be the least normal logic in our language containing
1. O¢ — O0¢
2. O*¢ — %o

O¢ — 0%

O*¢ — O0*¢

O*¢ — OO

O0*¢ — O%¢

S

Proposition (Soundness)
» if ¢ € L, then ¢ is valid in all relational frames
» if » € L, then ¢ is valid in all topological frames



Axiomatization and completeness

Axiomatization

Proposition (Completeness)
» if ¢ is valid in all relational frames, then ¢ € L

Example

» if o =0(p — Op) — (Op — O*p), then
» ¢ is valid in all topological frames
» ¢ is not valid in all relational frames



Axiomatization and completeness

Axiomatization

A set I of formulas is said to be an L-theory iff
» [ contains L
» [ is closed under the rule of modus ponens

We shall say that an L-theory I'
> is consistentiff L ¢ T
» is maximal iff for all formulas ¢, eitherp € ', or —¢p € T

Given an L-theory I' and a formula ¢
>T+o={:¢p—verl}
» OF ={¢: 0o T}
> O T={p:T¢perl}



Axiomatization and completeness

Axiomatization

Lemma
1. I + ¢ is the least L-theory containing I' and ¢
2. T + ¢is consistent iff -¢ ¢ T
3. Or is an L-theory
4. OT is an L-theory

Lemma (Lindenbaum’s Lemma)

» if [ is a consistent L-theory, then there exists a maximal
consistent L-theory A suchthat C A



Axiomatization and completeness

Axiomatization

Lemma (Existence Lemma)

1. if I is @ maximal consistent L-theory such that ¢ ¢ I, then
there exists a maximal consistent L-theory A such that OOl
CAando ¢ A

2. if I is a maximal consistent L-theory such that (0*¢ ¢ T,
then there exists a maximal consistent L-theory A such
that " C Aand ¢ ¢ A

Lemma

» if 0*I' C A then there exists a maximal consistent L-theory
AsuchthatOf CAand (A C A



Axiomatization and completeness

Axiomatization

A subordination structure is a structure of the form S =
(X, R, S, 1) such that

X is a finite nonempty set

R and S are strict partial orders on X
SCR

RoSCS

SoRCS

1 is an interpretation on X, i.e. p associates a maximal
consistent L-theory p(x) to any x € X

v

vV v . v. v Y

Proposition

» if ¢ is true in the class of all subordination structures of
cardinality 1 then ¢ € L



Axiomatization and completeness

Axiomatization

Given a subordination structure S = (X, R, S, i), it may contain
imperfections
C-imperfections: triples of the form (x,d, ¢) where x € X is
such that
> Uo & u(x)
» forally € X, if x Ry, then ¢ € u(y)
C*-imperfections: triples of the form (x,0*, ¢) where x € X is
such that
> O0%¢ & u(x)
» forally € X, if x Sy, then ¢ € u(y)
imperfections of density pairs of the form (x, y) where x,y € X
are such that
» xSy
» forall z € X, eithernot x Rz,ornotz Sy



Axiomatization and completeness

Repairing imperfections

Lemma: Given a O-imperfection (x,, ¢) in a subordination
structure S

» there exists a subordination structure S’ such that S’
contains S and (x, 0, ¢) is not a O-imperfection in &’

Proof



Axiomatization and completeness

Repairing imperfections

Lemma: Given a O-imperfection (x,, ¢) in a subordination
structure S

» there exists a subordination structure S’ such that S’
contains S and (x, 0, ¢) is not a O-imperfection in &’

Proof
S=(X,R,S )

x 06 ¢ u(x)



Axiomatization and completeness

Repairing imperfections

Lemma: Given a O-imperfection (x,, ¢) in a subordination
structure S

» there exists a subordination structure S’ such that S’
contains S and (x, 0, ¢) is not a O-imperfection in &’

Proof
S=(X,R,S )

X100 & p(x)
RI

y't Oux)u{=¢} C 1 (y')



Axiomatization and completeness

Repairing imperfections

Lemma: Given a O*-imperfection (x,0*, ¢) in a subordination
structure S

» there exists a subordination structure S’ such that S’
contains S and (x, 0%, ¢) is not a O*-imperfection in &’

Proof



Axiomatization and completeness

Repairing imperfections

Lemma: Given a O*-imperfection (x,0*, ¢) in a subordination
structure S

» there exists a subordination structure S’ such that S’
contains S and (x, 0%, ¢) is not a O*-imperfection in &’

Proof
S=(X,R,S )

X0 & p(x)



Axiomatization and completeness

Repairing imperfections

Lemma: Given a O*-imperfection (x,0*, ¢) in a subordination
structure S

» there exists a subordination structure S’ such that S’
contains S and (x, 0%, ¢) is not a O*-imperfection in &’

Proof
S=(X,R,S )




Axiomatization and completeness

Repairing imperfections

Lemma: Given an imperfection of density (x,y) in a
subordination structure S

» there exists a subordination structure S’ such that S’
contains S and (x, y) is not an imperfection of density in S’

Proof



Axiomatization and completeness

Repairing imperfections

Lemma: Given an imperfection of density (x,y) in a
subordination structure S

» there exists a subordination structure S’ such that S’
contains S and (x, y) is not an imperfection of density in S’

Proof
S=(X,R,S,u)



Axiomatization and completeness

Repairing imperfections

Lemma: Given an imperfection of density (x,y) in a
subordination structure S

» there exists a subordination structure S’ such that S’
contains S and (x, y) is not an imperfection of density in S’

Proof
S=(X,R,S,u)



Axiomatization and completeness

Completeness

Theorem: The following conditions are equivalent
1. g€l
2. ¢ is valid in the class of all relational frames

3. ¢ is true in the class of all subordination structures of
cardinality 1



Definability

Modal definability

Proposition

» (J* is not definable in the ordinary language of modal logic
with respect to L



Definability

Modal definability

Proof:

1.

assume there exists a formula ¢ in the ordinary language
of modal logic defining [0* with respect to L

let M = (Z,<z,0, V) and M’ = (Q, <g, <q, V') with V(q)
= () and V’(q) = 0 for all Boolean variables g

remark that for all formulas « in the ordinary language of
modal logic, for all x € Z and for all X’ € Q, M, x |= ¢ iff

M X' =
hence, M,0 = ¢ iff M’ 0 = ¢
remark that M, 0 = O*p and M’,0 = O*p

since ¢ defines O* with respect to L, M,0 | ¢ and M’,0
= ¢: a contradiction



Definability

First-order definability

Proposition
» the class of all relational frames is not first-order definable



Definability

First-order definability

Proof:

1. assume there exists a first-order sentence ¢
defining the class of all relational frames

2. forall n e N, let 7, = (X, Rn, Sp) be the relational
frame defined by X, = {0,...,n}, R, = <x, and
Sn=10

3. obviously, for all n € N

1. FnE=o¢
2. FnEIY X (R(X,y)VX=Y)
3. Fn EVXxVy =S(x,y)



Definability

First-order definability

4. let U be an ultrafilter over N and Fy =
(Xu, Ru, Su) be the ultraproduct of the family {Fp:
n € N} modulo U
5 by3
1. FukEo
2. FulE 3y Vx (R(x,y)Vx=y)
3. Fu EVYxVy =S(x,y)
6. forall i € N, let [/] be the class of (i, /,...) modulo
U
7. remark thatforall i,j e N, [i] Ry [j] iff i <j
8. by 5.2, there exists My € Xy such that for all / € N,
either [i] Ry My, or [i] = My
9. by7,forallieN,[i] Ry My



Definability

First-order definability

10.

11.

12.
13.
14.
15.

let R}, be the binary relation on X, such that for all
X,y € Xy, x R}, y iff there exists i € N such that x
=[i]and y = My

remark that R}, is a strict partial order on Xy, R},
C Ryand R, #0

claim: R, < 6g,(R})

hence, R, < gfp(fr,)

by 5.1 and 5.3, gfp(0g,) = 0

by 13, R}, = (: a contradiction



Notes

Open problems:

1.

Philosophical interpretation of [* in terms of beliefs ?

2. What is the logic of [J* alone ? K4 ?

o g bk~ w

Finite model property of L ?

Decidability/complexity of the membership problem in L ?
Modal definability of the class of all relational frames ?
Generalization to other monotonic functions 6g: Lg — Lg
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