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Universidad Rey Juan Carlos



Introduction

Given a topology τ on a nonempty set X
I the τ -derived set dτ (A) of a set A ⊆ X of points

=
the set of all limit points of A with respect to τ

The derivative operator dτ possesses interesting properties
I a set A ⊆ X of points is τ -closed

iff
dτ (A) ⊆ A

What happens if we iterate the derivative operator dτ
I considering the sequence dτ , dτ ◦ dτ , . . . of operators



Introduction

If τ is TD, then
I each element dατ of this sequence is a derivative operator

A question arises
I what is the link between the topologies τα corresponding to

the elements dατ of the sequence

The answer is simple
I the topologies τα are getting finer when α increases



Introduction

The lattice of all TD topologies on X is complete
I this iteration process should stop

The Cantor-Bendixson rank of (X , τ) is defined as
I the least ordinal α such that dτ (dατ (X )) = dατ (X )

A consequence of Tarski’s fixpoint theorem is that
I there exists an ordinal α? such that α ≤ α? and

dτ ◦ dα
?

τ = dα
?

τ



Introduction

Any strict partial order R on X defines a function θR which
I associates to each strict partial order S ⊆ R on X the strict

partial order θR(S) = R ◦ S on X

What happens if we iterate the function θR

I considering the sequence R, θR(R), . . . of partial orders

Simply
I the partial orders θαR(R) are getting smaller when α

increases



Introduction

The lattice of all strict partial orders on X is complete
I this iteration process should stop

There exists an ordinal α? such that
I θR(θα

?

R (R)) = θα
?

R (R)

If R is the strict partial order on X corresponding to a given
Alexandroff TD derivative operator d , then

I θα
?

R (R) is a strict partial order on X corresponding to the
derivative operator dα

?

τ considered above



Contents

1. Introduction
2. Topologies and derivative operators
3. Alexandroff TD derivative operators and strict partial orders
4. Cantor-Bendixson ranks
5. A modal logic
6. Axiomatization and completeness
7. Definability
8. Notes



Topologies and derivative operators
Topologies

A topology on X is a set τ of subsets of X such that
I ∅ ∈ τ
I X ∈ τ
I if A,B ∈ τ , then A ∩ B ∈ τ
I if (Ai)i is a collection of subsets of X such that Ai ∈ τ for

every i , then
⋃

i Ai ∈ τ

We shall say that
I A ⊆ X is τ -closed iff X \ A ∈ τ



Topologies and derivative operators
Topologies

τ is said to be TD iff
I for all x ∈ X , there exists A,B ∈ τ such that A \ B = {x}

We shall say that τ is Alexandroff iff
I each intersection of members of τ is in τ



Topologies and derivative operators
Topologies

Let ≤ be the binary relation between topologies on X such that
I τ ≤ τ ′ iff τ ⊆ τ ′

Remark that for all topologies τ, τ ′ on X
I if τ ≤ τ ′, then if τ is TD, then τ ′ is TD

Example: the Sierpiński space
I X = {x , y}
I τ = {∅, {x},X}



Topologies and derivative operators
Topologies

Given a topology τ on X
I let Lτ be the set of all topologies τ ′ on X such that τ ≤ τ ′

Remark that
I the least element of Lτ is τ
I the greatest element of Lτ is the topology P(X )

I the least upper bound of a family {τ ′i : i ∈ I} in Lτ is the
intersection of all τ ′ ∈ Lτ such that

⋃
{τ ′i : i ∈ I} ⊆ τ ′

I the greatest lower bound of a family {τ ′i : i ∈ I} in Lτ is⋂
{τ ′i : i ∈ I}

I (Lτ ,≤) is a complete lattice



Topologies and derivative operators
Derivative operators

A derivative operator on X is a function d : P(X )→ P(X )
such that

I d(∅) = ∅
I for all A,B ⊆ X , d(A ∪ B) = d(A) ∪ d(B)

I for all A ⊆ X , d(d(A)) ⊆ d(A) ∪ A
I for all x ∈ X , x 6∈ d({x})

A ⊆ X is said to be
I d-closed iff d(A) ⊆ A



Topologies and derivative operators
Derivative operators

We shall say that d is TD iff
I for all A ⊆ X , d(d(A)) ⊆ d(A)

d is said to be Alexandroff iff
I for all x ∈ X , there exists a greatest A ⊆ X such that A is

d-closed and x 6∈ A



Topologies and derivative operators
Derivative operators

Let ≤ be the binary relation between derivative operators on X
such that

I d ≤ d ′ iff for all A ⊆ X , d(A) ⊆ d ′(A)

Remark that for all derivative operators d ,d ′ on X
I if d ≤ d ′, then if d ′ is TD, then d is TD

Example
I X = {x , y}
I d(∅) = ∅
I d({x}) = {y}
I d({y}) = ∅
I d(X ) = {y}



Topologies and derivative operators
Derivative operators

Given a derivative operator d on X
I let Ld be the set of all derivative operators d ′ on X such

that d ′ ≤ d

Remark that
I the least element of Ld is the derivative operator d∅:
P(X )→ P(X ) such that for all A ⊆ X , d∅(A) = ∅

I the greatest element of Ld is d
I we do not know any representation of the least upper

bound and the greatest lower bound of a family {d ′i : i ∈ I}
in Ld

I (Ld ,≤) is a complete lattice



Topologies and derivative operators
Topologies v. derivative operators

Given a topology τ on X
I let dτ be the function dτ : P(X )→ P(X ) such that for all A
⊆ X , dτ (A) = {x : x is a τ -limit point of A}

Remark that
I dτ is a derivative operator on X
I for all A ⊆ X , A is dτ -closed iff A is τ -closed
I dτ is TD iff τ id TD

I dτ is Alexandroff iff τ is Alexandroff
I dτ ′ ≤ dτ iff τ ≤ τ ′



Topologies and derivative operators
Topologies v. derivative operators

Given a derivative operator d on X
I let τd be the set of d-open subsets of X

Remark that
I τd is a topology on X
I for all A ⊆ X , A is τd -closed iff A is d-closed
I τd is TD iff d id TD

I τd is Alexandroff iff d is Alexandroff
I τd ′ ≤ τd iff d ≤ d ′



Topologies and derivative operators
Topologies v. derivative operators

Let us further remark that
I τdτ = τ

I dτd = d

Given a topology τ on X
I the function f : Lτ → Ldτ such that f (τ ′) = dτ ′ is an

anti-isomorphism between (Ldτ ,≤) and (Lτ ,≤)

Given a derivative operator d on X
I the function f : Ld → Lτd such that f (d ′) = τd ′ is an

anti-isomorphism between (Lτd ,≤) and (Ld ,≤)



Alexandroff TD derivative operators and strict partial
orders
Alexandroff TD derivative operators

Given an Alexandroff TD derivative operator d on X
I let LA

d be the set of all Alexandroff TD derivative operators
d ′ on X such that d ′ ≤ d

Remark that
I the least element of LA

d is the derivative operator d∅
I the greatest element of LA

d is d
I we do not know any representation of the least upper

bound and the greatest lower bound of a family {d ′i : i ∈ I}
in LA

d
I (LA

d ,≤) is a complete lattice



Alexandroff TD derivative operators and strict partial
orders
Strict partial orders

A strict partial order on X is a binary relation R on X such
that

I for all x ∈ X , x 6∈ R(x)

I for all x ∈ X , R(R(x)) ⊆ R(x)

We shall say that A ⊆ X is
I R-closed iff R−1(A) ⊆ A



Alexandroff TD derivative operators and strict partial
orders
Strict partial orders

Let ≤ be the binary relation between strict partial orders on X
such that

I R ≤ R′ iff R ⊆ R′



Alexandroff TD derivative operators and strict partial
orders
Strict partial orders

Given a strict partial order R on X
I let LR be the set of all strict partial orders R′ on X such

that R′ ≤ R

Remark that
I the least element of LR is the strict partial order ∅
I the greatest element of LR is R
I the least upper bound of a family {R′i : i ∈ I} in LR is the

transitive closure of
⋃
{R′i : i ∈ I}

I the greatest lower bound of a family {R′i : i ∈ I} in LR is⋂
{R′i : i ∈ I}

I (LR,≤) is a complete lattice



Alexandroff TD derivative operators and strict partial
orders
Alexandroff TD derivative operators v. strict partial orders

Given an Alexandroff TD derivative operator d on X
I let Rd be the binary relation on X such that for all x , y ∈ X ,

x Rd y iff x ∈ d({y})

Remark that
I Rd is a strict partial order on X
I for all A ⊆ X , A is Rd -closed iff A is d-closed
I Rd ≤ Rd ′ iff d ≤ d ′



Alexandroff TD derivative operators and strict partial
orders
Alexandroff TD derivative operators v. strict partial orders

Given a strict partial order R on X
I let dR be the function dR: P(X )→ P(X ) such that for all A
⊆ X , dR(A) = R−1(A)

Remark that
I dR is an Alexandroff TD derivative operator on X
I for all A ⊆ X , A is dR-closed iff A is R-closed
I dR ≤ dR′ iff R ≤ R′



Alexandroff TD derivative operators and strict partial
orders
Alexandroff TD derivative operators v. strict partial orders

Let us further remark that
I dRd = d
I RdR = R

Given an Alexandroff TD derivative operator d on X
I the function f : LA

d → LRd such that f (d ′) = Rd ′ is an
isomorphism between (LRd ,≤) and (LA

d ,≤)

Given a strict partial order R on X
I the function f : LR → LA

dR
such that f (R′) = dR′ is an

isomorphism between (LA
dR
,≤) and (LR,≤)



Cantor-Bendixson ranks
Cantor-Bendixson ranks of Alexandroff TD derivative operators

Given an Alexandroff TD derivative operator d on X
I let θd be the function θd : Ld → Ld such that for all d ′ ∈ Ld ,
θd (d ′) = d ◦ d ′

Clearly
I θd is monotonic
I θd has a least fixpoint lfp(θd ) and a greatest fixpoint gfp(θd )

I lfp(θd ) = d∅
I gfp(θd ) is the least upper bound of the family {d ′: d ′ ≤
θd (d ′)} in Ld



Cantor-Bendixson ranks
Cantor-Bendixson ranks of Alexandroff TD derivative operators

For all ordinals α, we inductively define θd↓α as follows
I θd↓0 is d
I for all successor ordinals α, θd↓α is θd (θd↓(α− 1))

I for all limit ordinals α, θd↓α is the greatest lower bound of
the family {θd↓β: β ∈ α} in Ld

There exists an ordinal α such that
I θd↓α = gfp(θd )



Cantor-Bendixson ranks
Cantor-Bendixson ranks of Alexandroff TD derivative operators

The least ordinal α such that
I θd↓α = gfp(θd )

is called the Cantor-Bendixson rank of d

Example
I X = Z
I dZ(A) = {x : there exists y ∈ A such that x <Z y}
I obviously

I θdZ (θdZ↓ω) = θdZ↓ω
I the Cantor-Bendixson rank of dZ is ω



Cantor-Bendixson ranks
Cantor-Bendixson ranks of strict partial orders

Given a strict partial order R on X
I let θR be the function θR: LR → LR such that for all R′ ∈ LR,
θR(R′) = R ◦ R′

Clearly
I θR is monotonic
I θR has a least fixpoint lfp(θR) and a greatest fixpoint

gfp(θR)

I lfp(θR) = ∅
I gfp(θR) is the least upper bound of the family {R′: R′ ≤
θR(R′)} in LR



Cantor-Bendixson ranks
Cantor-Bendixson ranks of strict partial orders

For all ordinals α, we inductively define θR↓α as follows
I θR↓0 is R
I for all successor ordinals α, θR↓α is θR(θR↓(α− 1))

I for all limit ordinals α, θR↓α is the greatest lower bound of
the family {θR↓β: β ∈ α} in LR

There exists an ordinal α such that
I θR↓α = gfp(θR)



Cantor-Bendixson ranks
Cantor-Bendixson ranks of strict partial orders

The least ordinal α such that
I θR↓α = gfp(θR)

is called the Cantor-Bendixson rank of R

Example
I X = Q
I x RQ y iff x <Q y
I obviously

I θRQ (θRQ↓0) = θRQ↓0
I the Cantor-Bendixson rank of RQ is 0



Cantor-Bendixson ranks
Alexandroff TD derivative operators v. strict partial orders

Let d be an Alexandroff TD derivative operator on X and R be a
strict partial order on X such that

I for all x , y ∈ X , x R y iff x ∈ d({y})
I for all A ⊆ X , d(A) = R−1(A)

One can prove by induction on the ordinal α that
I for all x , y ∈ X , x θR↓α y iff x ∈ θd↓α({y})
I for all A ⊆ X , θd↓α(A) ⊇ θR↓α−1(A)



Cantor-Bendixson ranks
Alexandroff TD derivative operators v. strict partial orders

Let
I αd be be the Cantor-Bendixson rank of d
I αR be the Cantor-Bendixson rank of R

The above considerations prove that
I for all x , y ∈ X , x θR↓α y iff x ∈ θd↓α({y})
I for all A ⊆ X , θd↓α(A) ⊇ θR↓α−1(A)



Cantor-Bendixson ranks
Alexandroff TD derivative operators v. strict partial orders

Example
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A modal logic
Syntax

Formulas are defined as follows
I φ ::= p | ⊥ | ¬φ | (φ ∨ ψ) | �φ | �?φ

Abbreviations
I Standard definitions for the remaining Boolean operations
I ♦φ ::= ¬�¬φ
I ♦?φ ::= ¬�?¬φ



A modal logic
Relational semantics

A relational frame is a structure of the form F = (X ,R,S)
such that

I X is a nonempty set
I R is a strict partial order on X
I S is the greatest fixpoint of the function θR in LR

Lemma: if F = (X ,R,S) is a relational frame, then
1. R ◦ R ≤ R
2. S ◦ S ≤ S
3. S ≤ R
4. R ◦ S ≤ S
5. S ◦ R ≤ S
6. S ≤ R ◦ S



A modal logic
Relational semantics

A relational model is a structure of the formM = (X ,R,S,V )
such that

I (X ,R,S) is a relational frame
I V is a valuation on X

Satisfiability
I M, x |= p iff x ∈ V (p)

I M, x 6|= ⊥
I M, x |= ¬φ iffM, x 6|= φ

I M, x |= φ ∨ ψ iff eitherM, x |= φ, orM, x |= ψ

I M, x |= �φ iff for all y ∈ X , if x R y , thenM, y |= φ

I M, x |= �?φ iff for all y ∈ X , if x S y , thenM, y |= φ



A modal logic
Relational semantics

Lemma: if F = (X ,R,S) is a relational frame, then
1. F |= �φ→ ��φ

2. F |= �?φ→ �?�?φ

3. F |= �φ→ �?φ

4. F |= �?φ→ ��?φ

5. F |= �?φ→ �?�φ

6. F |= ��?φ→ �?φ



A modal logic
Topological semantics

A topological frame is a structure of the form F = (X ,d ,e)
such that

I X is a nonempty set
I d is an Alexandroff TD derivative operator on X
I e is the greatest fixpoint of the function θd in Ld

Lemma: if F = (X ,d ,e) is a topological frame, then
1. d ◦ d ≤ d
2. e ◦ e ≤ e
3. e ≤ d
4. d ◦ e ≤ e
5. e ◦ d ≤ e
6. e ≤ d ◦ e



A modal logic
Topological semantics

A topological model is a structure of the formM =
(X ,d ,e,V ) such that

I (X ,d ,e) is a topological frame
I V is a valuation on X

Interpretation
I ‖ p ‖M = V (p)

I ‖ ⊥ ‖M = ∅
I ‖ ¬φ ‖M = X\ ‖ φ ‖M
I ‖ φ ∨ ψ ‖M = ‖ φ ‖M ∪ ‖ ψ ‖M
I ‖ �φ ‖M = X \ d(X\ ‖ φ ‖M)

I ‖ �?φ ‖M = X \ e(X\ ‖ φ ‖M)



A modal logic
Topological semantics

Lemma: if F = (X ,d ,e) is a topological frame, then
1. F |= �φ→ ��φ

2. F |= �?φ→ �?�?φ

3. F |= �φ→ �?φ

4. F |= �?φ→ ��?φ

5. F |= �?φ→ �?�φ

6. F |= ��?φ→ �?φ



Axiomatization and completeness
Axiomatization

Let L be the least normal logic in our language containing
1. �φ→ ��φ

2. �?φ→ �?�?φ

3. �φ→ �?φ

4. �?φ→ ��?φ

5. �?φ→ �?�φ

6. ��?φ→ �?φ

Proposition (Soundness)
I if φ ∈ L, then φ is valid in all relational frames
I if φ ∈ L, then φ is valid in all topological frames



Axiomatization and completeness
Axiomatization

Proposition (Completeness)
I if φ is valid in all relational frames, then φ ∈ L

Example
I if φ = �(p → ♦p)→ (♦p → ♦?p), then

I φ is valid in all topological frames
I φ is not valid in all relational frames



Axiomatization and completeness
Axiomatization

A set Γ of formulas is said to be an L-theory iff
I Γ contains L
I Γ is closed under the rule of modus ponens

We shall say that an L-theory Γ

I is consistent iff ⊥ 6∈ Γ

I is maximal iff for all formulas φ, either φ ∈ Γ, or ¬φ ∈ Γ

Given an L-theory Γ and a formula φ
I Γ + φ = {ψ: φ→ ψ ∈ Γ}
I �Γ = {φ: �φ ∈ Γ}
I �?Γ = {φ: �?φ ∈ Γ}



Axiomatization and completeness
Axiomatization

Lemma
1. Γ + φ is the least L-theory containing Γ and φ
2. Γ + φ is consistent iff ¬φ 6∈ Γ

3. �Γ is an L-theory
4. �?Γ is an L-theory

Lemma (Lindenbaum’s Lemma)
I if Γ is a consistent L-theory, then there exists a maximal

consistent L-theory ∆ such that Γ ⊆ ∆



Axiomatization and completeness
Axiomatization

Lemma (Existence Lemma)
1. if Γ is a maximal consistent L-theory such that �φ 6∈ Γ, then

there exists a maximal consistent L-theory ∆ such that �Γ
⊆ ∆ and φ 6∈ ∆

2. if Γ is a maximal consistent L-theory such that �?φ 6∈ Γ,
then there exists a maximal consistent L-theory ∆ such
that �?Γ ⊆ ∆ and φ 6∈ ∆

Lemma
I if �?Γ ⊆ ∆ then there exists a maximal consistent L-theory

Λ such that �Γ ⊆ Λ and �?Λ ⊆ ∆



Axiomatization and completeness
Axiomatization

A subordination structure is a structure of the form S =
(X ,R,S, µ) such that

I X is a finite nonempty set
I R and S are strict partial orders on X
I S ⊆ R
I R ◦ S ⊆ S
I S ◦ R ⊆ S
I µ is an interpretation on X , i.e. µ associates a maximal

consistent L-theory µ(x) to any x ∈ X

Proposition
I if φ is true in the class of all subordination structures of

cardinality 1 then φ ∈ L



Axiomatization and completeness
Axiomatization

Given a subordination structure S = (X ,R,S, µ), it may contain
imperfections
�-imperfections: triples of the form (x ,�, φ) where x ∈ X is

such that
I �φ 6∈ µ(x)
I for all y ∈ X , if x R y , then φ ∈ µ(y)

�?-imperfections: triples of the form (x ,�?, φ) where x ∈ X is
such that

I �?φ 6∈ µ(x)
I for all y ∈ X , if x S y , then φ ∈ µ(y)

imperfections of density pairs of the form (x , y) where x , y ∈ X
are such that

I x S y
I for all z ∈ X , either not x R z, or not z S y



Axiomatization and completeness
Repairing imperfections

Lemma: Given a �-imperfection (x ,�, φ) in a subordination
structure S

I there exists a subordination structure S ′ such that S ′
contains S and (x ,�, φ) is not a �-imperfection in S ′

Proof



Axiomatization and completeness
Repairing imperfections

Lemma: Given a �-imperfection (x ,�, φ) in a subordination
structure S

I there exists a subordination structure S ′ such that S ′
contains S and (x ,�, φ) is not a �-imperfection in S ′

Proof

&%
'$

S = (X ,R,S, µ) rx �φ 6∈ µ(x)



Axiomatization and completeness
Repairing imperfections

Lemma: Given a �-imperfection (x ,�, φ) in a subordination
structure S

I there exists a subordination structure S ′ such that S ′
contains S and (x ,�, φ) is not a �-imperfection in S ′

Proof

&%
'$

S = (X ,R,S, µ) rx �φ 6∈ µ(x)

ry ′ �µ(x) ∪ {¬φ} ⊆ µ′(y ′)

R′



Axiomatization and completeness
Repairing imperfections

Lemma: Given a �?-imperfection (x ,�?, φ) in a subordination
structure S

I there exists a subordination structure S ′ such that S ′
contains S and (x ,�?, φ) is not a �?-imperfection in S ′

Proof



Axiomatization and completeness
Repairing imperfections

Lemma: Given a �?-imperfection (x ,�?, φ) in a subordination
structure S

I there exists a subordination structure S ′ such that S ′
contains S and (x ,�?, φ) is not a �?-imperfection in S ′

Proof

&%
'$

S = (X ,R,S, µ) rx �?φ 6∈ µ(x)



Axiomatization and completeness
Repairing imperfections

Lemma: Given a �?-imperfection (x ,�?, φ) in a subordination
structure S

I there exists a subordination structure S ′ such that S ′
contains S and (x ,�?, φ) is not a �?-imperfection in S ′

Proof

&%
'$

S = (X ,R,S, µ) rx �?φ 6∈ µ(x)

ry ′ �?µ(x) ∪ {¬φ} ⊆ µ′(y ′)

R′,S′



Axiomatization and completeness
Repairing imperfections

Lemma: Given an imperfection of density (x , y) in a
subordination structure S

I there exists a subordination structure S ′ such that S ′
contains S and (x , y) is not an imperfection of density in S ′

Proof



Axiomatization and completeness
Repairing imperfections

Lemma: Given an imperfection of density (x , y) in a
subordination structure S

I there exists a subordination structure S ′ such that S ′
contains S and (x , y) is not an imperfection of density in S ′

Proof

&%
'$

S = (X ,R,S, µ) ry

rx
S



Axiomatization and completeness
Repairing imperfections

Lemma: Given an imperfection of density (x , y) in a
subordination structure S

I there exists a subordination structure S ′ such that S ′
contains S and (x , y) is not an imperfection of density in S ′

Proof

&%
'$

S = (X ,R,S, µ) ry

rx
S

r z ′
PPPP

��
��

R′

S′



Axiomatization and completeness
Completeness

Theorem: The following conditions are equivalent
1. φ ∈ L
2. φ is valid in the class of all relational frames
3. φ is true in the class of all subordination structures of

cardinality 1



Definability
Modal definability

Proposition
I �? is not definable in the ordinary language of modal logic

with respect to L



Definability
Modal definability

Proof:
1. assume there exists a formula φ in the ordinary language

of modal logic defining �∗ with respect to L
2. letM = (Z, <Z, ∅,V ) andM′ = (Q, <Q, <Q,V ′) with V (q)

= ∅ and V ′(q) = ∅ for all Boolean variables q
3. remark that for all formulas ψ in the ordinary language of

modal logic, for all x ∈ Z and for all x ′ ∈ Q,M, x |= ψ iff
M′, x ′ |= ψ

4. hence,M,0 |= φ iffM′,0 |= φ

5. remark thatM,0 |= �∗p andM′,0 6|= �∗p
6. since φ defines �∗ with respect to L,M,0 |= φ andM′,0
6|= φ: a contradiction



Definability
First-order definability

Proposition
I the class of all relational frames is not first-order definable



Definability
First-order definability

Proof:
1. assume there exists a first-order sentence φ

defining the class of all relational frames
2. for all n ∈ N, let Fn = (Xn,Rn,Sn) be the relational

frame defined by Xn = {0, . . . ,n}, Rn = <Xn and
Sn = ∅

3. obviously, for all n ∈ N
1. Fn |= φ
2. Fn |= ∃y ∀x (R(x , y) ∨ x ≡ y)
3. Fn |= ∀x ∀y ¬S(x , y)



Definability
First-order definability

4. let U be an ultrafilter over N and FU =
(XU ,RU ,SU) be the ultraproduct of the family {Fn:
n ∈ N} modulo U

5. by 3
1. FU |= φ
2. FU |= ∃y ∀x (R(x , y) ∨ x ≡ y)
3. FU |= ∀x ∀y ¬S(x , y)

6. for all i ∈ N, let [i] be the class of (i , i , . . .) modulo
U

7. remark that for all i , j ∈ N, [i] RU [j] iff i < j
8. by 5.2, there exists MU ∈ XU such that for all i ∈ N,

either [i] RU MU , or [i] = MU

9. by 7, for all i ∈ N, [i] RU MU



Definability
First-order definability

10. let R′U be the binary relation on XU such that for all
x , y ∈ XU , x R′U y iff there exists i ∈ N such that x
= [i] and y = MU

11. remark that R′U is a strict partial order on XU , R′U
⊆ RU and R′U 6= ∅

12. claim: R′U ≤ θRU (R′U)

13. hence, R′U ≤ gfp(θRU )

14. by 5.1 and 5.3, gfp(θRU ) = ∅
15. by 13, R′U = ∅: a contradiction



Notes

Open problems:
1. Philosophical interpretation of �∗ in terms of beliefs ?
2. What is the logic of �∗ alone ? K 4 ?
3. Finite model property of L ?
4. Decidability/complexity of the membership problem in L ?
5. Modal definability of the class of all relational frames ?
6. Generalization to other monotonic functions θR: LR → LR
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